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ABSTRACT

The continuous integrals and integral equations which -

form the theory of Nearfield Acoustic Holography for planar ;

and odd-shaped source boundary surfaces are reviewed, and "

the approximations and assumptions necessary to reduce these -

equations to a set of finite and discrete operations

suitable for computation are developed. These equations

represent the solution of the Helmholtz equation with

specified boundary conditions by Green's function methods.

In analyzing the reduction, to discrete form, of the

propagation of planar holograms (a record of the radiated

field over a plane above the boundary plane), four new

methods for representing the Green's functions numerically

are developed. The relationship of two earlier Green's

function representation methods to these new forms is

established. The results of numerical testing of these six

representations are presented. These results demonstrate

the effectiveness of the new representations.

Two computational methods for reconstructing planar

source boundary fields from planar holograms are developed.

The first method is an approximation of the continuous >

solution method which the convolution theorem of Fourier ,-

p~iii
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Transforms provides. In its simplest form, this method has

a high sensitivity to noise; it is shown how this problem is

partially alleviated by the use of a high spatial frequency

filter. Numerical test results indicate the effectiveness

of this method for very short distances between hologram and

source boundary, a condition often satisfied in experiment.

The new methods for representing the Green's function,

developed for propagating planar holograms, are shown to be

inappropriate with this reconstruction technique.

As an alternative to this reconstuction method, a

conjugate gradient descent method is developed based on the

finite and discrete propagation method discussed.- This

technique does benefit from the new Green's function

representations. Although, this reconstruction method

requires more time than the first method presented, it is

relatively insensitve to noise, and it extends the feasible

reconstruction range, or distance between hologram and

boundary.

',,The reduction to finite and discrete form, by a Finite

Element technique, of the relationship between the Dirichlet

and Neumann boundary conditions for an odd shaped surface is

reviewed. To develop a unique relationship, assuming

radiation conditions apply, a knowledge of the boundary

surface's characteristic frequencies is essential, and a

method for detecting these frequencies for an odd-shaped



boundary is presented. A comparison of the characteristic

* frequencies predicted by this method and those given by

theory is presented for a spherical surface.

A technique for reconstructing the odd-shaped surface

boundary conditions from a hologram of general two-dimen-

sional shape is proposed. Results from a numerical study

which support this technique are presented. Two cases are

considered in this study: reconstruction of a spherical

boundary from a planar hologram, and reconstruction of a

spherical boundary from a concentric, spherical boundary.

NT1s -
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Chapter I.

INTRODUCTION TO NEARFIELD ACOUSTIC HOLOGRAPHY (NAH)

The works presented in this thesis are refinements and

extensions to the comptational theory and practice of an

exciting new imaging technique, conceived and developed at

Penn State, called Nearfield Acoustic Holography.1 The

computational techniques of Nearfield Acoustic Holography

are of particular interest to Physists, as they represent

the development and application of classical field theory to

large scale and geometrically complex problems. The

solution of such problems has become feasible only recently

as a result of the explosive development in computer

facilities in the last two decades. Quite naturally, it is

this author's hope that the methods explored and developed

here will continue to find application in other areas of

Physics, but for now this exposition must be limited to the

specific problems encountered in Nearfield Acoustic

Holography.

In the first section of this chapter, the basic

concepts of holography, acoustic holography, and Nearfield

Acoustic Holography are presented in turn. The major

impetus for developing MAH was its potential as an

experimental technique, 2 and defining the experimental
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requirements of NAH serve to define the technique; they are

presented in section B. The last section of this chapter

describes some areas of application for Nearfield Acoustic .

Holography.

A. Definition of Nearfield Acoustic Holography

In general usage, holography refers to the recording

3and reproduction of three dimensional optical images, and

it was Gabor's work in optics which led to the concept of

4holography. However, the basic idea of holography has

since been applied to many other fields and regimes, such as

seismic, ultrasonic, acoustic, and microwave fields5 ; hence,

the term deserves more general definition.

A.I. Holography

For the purposes of this thesis, holography may be

defined as a two step process which involves:

1) the recording, over a surface, of sufficient

information about a three-dimensional linear wave field

that, for practical purposes, the field can be uniquely

specified;

• . • . ..
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2) the subsequent display of any region of the original

three-dimensional field based on the single

two-dimensional record of the field obtained in part 1.

The record of this surface field information is refered to

as the hologram.

The ideal surface, over which the information is

recorded, the hologram surface, divides space into a region

with sources and a region without sources. The ideal

hologram contains all information about the field over this

entire surface. Of course, in practice, these ideals are

neither possible nor necessary, and, hence, the requirement

to specify the field uniquely is relaxed to a practical

level. It is the particular application which imposes the

minimum information requirements. For example, when viewing

an optical hologram of a set of chess pieces, one would not

expect to resolve micron size chips in the surface of a

pawn, even though such information is, in theory, carried by

the original field. More specific requirements as they,

apply to NAH, are discussed in later chapters.

A.2. Acoustic Holography

In its most complete form, acoustic holography is

concerned with recording sufficient information about an

acoustic field that the acoustic pressure, three components
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of particle velocity, and the three components of acoustic

intensity can be determined at any point in the source-free

region of the acoustic medium. NAH essentially meets this

goal, although acoustic holography techniques of the past

fell quite short of this goal in experimental theory and

practice.

Previous forms of acoustic holography were largely

based on the experimental methods of optical holography, and

many required the use of lasers to redisplay the acoustic

field.6 -7 These methods recorded either a component of

particle velocity or the acoustic pressure over the hologram

surface. Since these methods depended on optical inter-

ference phenomena to redisplay the holographically recorded

field component, subsequent observation of the reproduced

field had to be accomplished by a phase- insensitive optical

device. The resulting lack of phase information precluded

the accurate determination of the remaining acoustic field

variables, including the acoustic intensity vector field.

Another problem with previous acoustic holography

techniques was resolution. This problem resulted from

developing acoustic holography from experimental optical

holography whose theory and success is, for the most part,

based on the assumed existence of a purely propagating wave

field. To insure the validity of this assumption, a

hologram must be located in the farfield of any source.
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Since they were based on experimental optical methods,

earlier forms of acoustic holography were similarly

restricted. This restriction is of little consequence in

optical holography, although it imposes a wavelength

resolution limit on the restored fields. However, if this

resolution limit was physically inherent in all holography

theory, acoustic holography would be useless for many

problems in the audio range, where wavelengths are typically

larger than their source. Fortunately this limitation is

only a practical limitation occurring in most forms of

optical holography,8 and it may be viewed as artificial in

acoustic holography.

A.3. Nearfield Acoustic HoloQraphy

Nearfield Acoustic Holography is an acoustic

holography technique which comes much closer to the ideal

holography described above. As its name declares, this

method is carried out in the nearfield of radiating sources,

and much of its merit comes from the ability of this

technique to accurately process the non-propagating wave

field information present in the nearfield. The resolution

of this technique is not limited by the wavelength.

-- " ..- ",-. ... , -. ,,-. - -. .. .- ... -... .,. .- ... .. - - ,.- .. .-
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To understand how this increase in resolution is

obtained, and why former techniques could not achieve this

resolution, it is expedient to separate the possible finite

linear acoustic wave solutions, in a semi-infinite space,

into two catagories: propagating waves which transport

energy out to infinity, and evanescent waves which are

characterized by their rapid decay.8 As discussed in

chapter II and the original NAH paper for planar bound-

aries, this separation is performed explicitly by the

Fourier transform, and the resulting evanescent waves

manifestly decay exponentially. Information about details

of a source smaller than the characteristic acoustic wave-

length can only be obtained by measuring the strength of

these evanescent waves, restoring them to their original

strength at the source, and finally superimposing these

waves with the readily restored propagating waves. It is

not possible to restore these decayed waves, a process which

requires selective enhancement, in the older forms of

acoustic holography which rely on optical wave propagation

to achieve a representative optical restoration of the

acoustic field.

NAH does not require such a restoration technique due

to its unique process for forming the hologram; the hologram

is an electronically recorded sample, in digital form, of

the field at a large number of points over the hologram
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surface. With this type of hologram, numerical restoration

of evanescent waves is relatively easy, and phase

information is also readily obtained and manipulated

numerically. The numerically restored fields are displayed

with computer graphics.

At this point, an examination of the experimental

hardware requirements of NAH will define the particulars of

the overall technique.

B. Experimental requirements

The experimental implementation of NAH, such as the

prototype system at Penn State, consists of the

successful integration of an extensive system of electronic

equipment. An appreciation of the capabilities and limita-

tions of such a system, gained by examining its experimental

requirements, will help clarify the restrictions and

approximations introduced in the remaining chapters, where

computational NAH methods are developed largely with

experimental systems in mind.

The experimental equipment may be divided into two

subsystems: the transducers and the computer facilities.

The requirements and tasks for each subsystem are outlined

below.

'Ii

p V - * *- .. . . .. . -
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B.1. Transducers

Inorder to avoid aliasing, the transducer subsystem in

a typical NAH set-up must supply the computer subsystem, at

10a rate at least twice the maximum acoustic frequency, with

a digital representation of the acoustic pressure at a each

of the points which define the hologram surface. This sub-

system must also supply the exact location of the measure-

4 ment points. Two methods have been employed to locate the

hologram measurement points, and these two methods also have

different equipment requirements and data conversion limita-

tions.

A 16x16 square array of microphones forms the heart of

the prototype transducer system at Penn State. Each

microphone is fixed in position in the array, and the entire

array is positioned by synchronous motors under computer

control.1 With this system it is easy to determine the

relative and absolute positions of each microphone. Each

microphone is equipped with a preamplifier, noise filter,

and an analog switch.1 As part of a relatively complex

high speed switching system, the analog switch selectively

connects the microphone to a shared signal line, and this

signal is then routed to a high speed analog to digital

converter.13 The advantages of such a system are the
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speed with which single frequency sources can be analyzed

and, due to the nearly simultaneous sampling of the

microphones achieved with the switching system, the

possibility of analyzing relatively wideband sources.
1 3

Some of the complexity and speed of a microphone array

system can be traded off in the study of single frequency

sources, or highly reproducible wideband sources, by using

an articulated boom mounted microphone. Besides the loss in

speed, the use of this type of system requires a more

complex system for specifying the microphone location. On

the positive side, with a single microphone, phase sensitive

detection methods can be employed to reduce the single to

noise ratio in single frequency studies.14 Also, an

articulated boom mounted microphone allows the specification

hologram surfaces which are not flat, and this may be of

great advantage in the study of odd-shaped sQurces as

discussed in chapters V and VI. Boom mounted systems have

been employed by a number of investigators. 1 5'16  In this

type of system, the final output is either a near real-time

digital representation of the microphone signal, which is

collected and processed by the computer system or, for

single frequency work with phase-sensitve detection, a

digital representation of the phase (e.g.,relative to the

source drive signal) and amplitude of the microphone signal.
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B.2. Computer and Graphic output devices

The computer system in a NAH experiment serves to

store, process, and display all collected and generated

data, and it is easiest to review the system reqiirements by

describing the Penn State system and the role its components

play. The Penn State system is composed of a minicomputer

with the following attached components: a peripheral port

connection with the analog to digital system, hard disk and

floppy disk storage devices, an array processor, a vector

graphics display monitor, and a pen plotter. The role of

each of these devices is seen by following the typical

sequence of steps in a NAH experiment.

A digital sample of the signal at each microphone

location, as a function of time, is collected by the

computer from the analog to digital conversion system. Each

of these time sequences is passed to the array processor

where they are transformed into a frequency domain

representation. An important step in this part of the

process is calibration. In a multiple microphone system,

calibration information is stored for each microphone

providing its relative phase and amplitude response. The

measured response of each microphone is normalized with this

calibration data. 17 Taken at a single frequency, the set

of complex numbers, representing the acoustic pressure

. 7
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amplitude and phase at each microphone, defines an acoustic

hologram. Any number of these single frequency acoustic

holograms are stored on magnetic disks. From one of these

holograms, a digital representation of the original acoustic

field at any number of spatial locations is generated by

numerical methods (these methods being the point of this

thesis). Since an enormous amount of data is normally

generated, it is usually displayed on one of the graphic

output devices. This graphic output typically takes the

form of a hidden-line plot of an acoustic variable versus

two spatial dimensions as in the example of figure 1.1, or

it may take the form of a vector intensity map as in the

example of figure 1.2. The time dependence of the acoustic

parameters be displayed with motion pictures on the display

monitor.18  This type of display is particularly instructive

in the study of source boundaries, as the source structure's

complicated dynamic response may be veiwed in slow-motion.

C. Applications

The direct applications of NAH are numerous due to the

wealth of information about an acoustic field it can provide

from a relatively small amount of input data. There is much

interest in acoustic intensity measurement today, and the

holographic method can quickly provide a detailed mapping of

. .. ..-
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.1*.

...

Figure 1.1 In NAN, the acoustic field is viewed with
computer graphics. As an example, this hidden-line plot
displays the pressure amplitude at the boundary plane as
produced by a piston set in an otherwise rigid boundary.

- 5 *5*L*- .. . .*. *.~~~
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Figure 1.2 NAH techniques were used to generate this
theoretical vector intensity map for a point source.
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this energy flow as can no other technique, such as the "two

19microphone technique", provide in a reasonable time. An
20u

advantage which NAH has over dual or multiple 2 0 microphone

texhniques is that, the intensity determined at a specific

point by the holographic process is dependent on a large

number of microphone measurements (typically 4096 with the

prototype system at Penn State), whereas the intensity

determined with other techniques is dependent only a few

measurements. This integration of a large number of

measurements can be expected to improve the signal to noise

ratio, relative to other field mapping techniques.

Its speed and accuracy make NAH ideally suited for the study

of sound production equipment, and prototype systems for

studying musical instruments and loudspeakers are already in

use.15,21

NAH also provides a fast non-contact method for

determining the normal component of surface velocity of a

vibrating source. A particularlly interesting application

of this capability is in the proposed experimental

observation of an acoustic analogue of 2-D Anderson

Localization,22 where the technique will be used to observe

t. .'.
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the vibrational modes of a randomly nonuniform elastic

sheet. 2 3 From the holographically determined normal p

component of velocity, the flow of energy within a plate may

also be studied.
2 4

Any area where quick and accurate determination of the

acoustic field above a plane or other level surface in a

separable coordinate system will benefit from the

application of NAN in its present state of development.
9

With the experimental implementation of the extensions of

NAH to odd-shaped sources, and the refinement of the

computational methods of NAH presented in this thesis, the

list of practical applications should grow.

- -*
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Chapter II.

FUNDAMENTAL EQUATIONS OF NEARFIELD ACOUSTIC HOLOGRAPHY

The numerical methods of Nearfield Acoustic Holography

presented in the following chapters are approximations to a

set of continuous integrals and integral equations relating

the acoustic field to appropriate boundary conditions. It is

the purpose of this chapter to introduce these equations and

to clarify the objectives of this work in terms of these

equations.

The first section of this chapter very briefly reviews:

the formulation of Newton's Law for continuous media,

Euler's equation, which provides a direct link between the

acoustic pressure and particle velocity fields; and the

linear approximation of the general equations of non-viscous

hydrodynamics, which yields the Wave Equation and, for

single frequencies, the Helmholtz equation.

The continuous solution of the Helmholtz Equation with

boundary conditions is accomplished by a Green's function

technique. The basic ideas behind these techniques are

presented in section B. The Helmholtz Integrals and

Rayleigh's Integrals are reviewed in this section, as they

follow from the solution of the Helmholtz Equation by

Gree-''s function methods.
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The last section of this chapter introduces the

terminology used to define the specific problems in

Nearfield Acoustic Holography considered in this work.

A. The Acoustic Equations

The acoustic field variables of pressure and three

components of particle velocity are of "'ief interest in

Nearfield Acoustic Holography, and techniques are developed

for determining these fields as generated from single

frequency sources. Note that the term "source" refers to a

boundary condition in this thesis, since very few problems

in Acoustics involve any true volume sources, and no volume

sources are considered here. Also, considering only single

frequency sources is not restrictive as the extension of

these techniques to multiple frequencies is readily

accomplished by superposition of a number of single

frequency solution fields.

A.1 Euler's Equation

Newton's Second Law in a form suitable for use in

problems of continuous media provides the direct link

between the Acoustic pressure field and the three components

of the particle velocity field. By applying Newton's Second
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Law to an infinitesimal volume of inviscid fluid with

density p acted upon only by the pressure field p in which

it is immersed, it is straightforward to show that the

acceleration of this volume is given as

-&("t) ~t) -Ip t

This is Euler's Equation.25

All solutions to problems in this work are formulated

in terms of single temporal frequency components. A general

explicit function of time, f(t), is transformed to one

explicitly of frequency, F(w), by the Fourier transform

defined by

+00

F(w) = f f(t)eijtdt (2.2),

and its inverse

+00

f(t) = "f F(w)e-iitdw (2.3).

By expressing the velocity and pressure in equation (2.1) in

terms of their frequency domain representations, v(',w) and

p(r, w), with integrals of the form of equation (2.3),

Euler's Equation, equation (2.1), can be written as

= ~Lp~()(2.4).

Cip

This equation allows one to calculate the particle velocity

field once the acustic pressure field p(',w) has been found.
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A.2 The Wave and the Helmholtz Equations

The solution of the general equations of inviscid

hydrodynamics reduces to the solution of the Wave Equation

V 2 '(,'t) 1 2 (4,t) (2.5)

25
in a linear approximation with isentropic conditions.

The constant c is the propagation speed and is defined as

the partial derivative of the pressure with respect to

density at constant entropy. Both the pressure and

velocity fields must satisfy this equation.

By expressing the field T( ,t) with its temporal

Fourier Transform

+00

"(',t) = -j+J( ,(J)e-iJtdu (2.6),

the wave equation reduces to the Helmholtz Equation,

+40W (2.7).

For the remainder of this work, only solutions at a single

frequency o will be considered; therefore, for convenience,

the dependence of Y on w is suppressed, and the character

-istic wavenumber k replaces the equivalent constant u/c.

This simplifies the appearance of equation (2.7) to

-I



p. 20

V2 ( ) + k2 ( ) = 0 (2.8).

The problems of acoustic holography either involve finding

solutions to the Helmholtz Equation, equation (2.8), which

satisfy a particular set of boundary conditions, or they

involve finding a set of boundary conditions which produce a

field ' which satisfies equation (2.8) and is equivalent,

over a surface above the boundary surface, to a measured

field.

B. Green's Functions

The solution techniques presented in chapters III-VI

are numerical approximations to Green's function techniques

26for solving differential equations. The application of

these methods to the solution of the Helmholtz Equation with

boundary conditions is reviewed in this section.

B.1 Green's Theorem and the Green's Function

The Green's function method for solving the Helmholtz

Equation with boundary conditions involves finding a

solution to the inhomogeneous form of equation (2.8),

V2G(I0 - ) + k2G('0 
- ) = r )  (2.9),

where the right-hand side term is the delta function, and

p -
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the solution G is the Green's function for a specified

boundary condition. The utility of a solution to equation

(2.9) for solving equation (2.8) is clear if Green's

theorem is applied to the functions G and '. Green's

theorem guarauntees that27

[G( o  )V2r() - 0-( )VG( 0 -)]dV =

[)4G()VG( -)]oAda (2.10),

where the right-hand side integration surface S encloses the

left-hand side integration volume, and the surface normal

points into the volume. For the moment, it will be useful

to consider Y to be a solution of the inhomogeneous

Helmholtz equation given by

vY'(4) + k2 ( ) = -f(r) (2.11).

With equation (2.11) and (2.9), the left-hand side of

equation (2.10) reduces to

G( +~ VG(I -I)VIP(I)dV -CG(4 O-4)f( r)dV=

J 8(r0 -r)T()dV - f G(ro-r)f(')dV = ,( - G(ro-r)f(-)dV

(2.12),

so that the entire equation simplifies to

P( 0)  fG(Io-I)f( )dV + [, (I)vG(r ) - VY( )G(' )'° 1d
(2.13).

Equation (2.13) gives an explicit solution to equation

z
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(2.11) inside the volume bounded by the integration surface

S provided Y and Vfoi are known on this boundary, and the

forcing function -f(l) is known throughout the volume.

Only numerical solutions to the homogeneous Helmholtz

Equation are considered in this work; however, the

inhomogeneous term has been introduced to motivate the

existence of a solution to equation (2.9) which, along with

its normal derivative, vanishes over the integration surface

of equation (2.13) when this surface is very far from any

volume source region. It can be shown that there are two

such solutions possible, and they are 2 8

e +ikR e-ikR
G(r0 -r) - or (2.14),

4ffR 4TR

where R =1 4. By requiring the Green's function to

adhere to the principle of causality with the specified time

dependence of all solutions given in equation (2.6), the

second possibility for the right-hand side of equation

(2.14) is ruled out. The correct form for the Green's

function for an unbounded region, the free-space Green's

function, is 25

e+ikR=-eiR) (2.15),

4fR

and Y, with the restriction to a radiating form at large

distances, has the solution

...........................................
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qJ(r 0 ) -fGf(, r)f( )dV (2.16).

It is shown in the next section how the free-space Green's

function is of great utility in bounded acoustic problems

without volume sources.

B.2. The Helmholtz Integrals

The relationship stated in equation (2.13) holds for

any function G which satisfies equation (2.9), although it

is most useful when the function G also satisfies either

homogeneous Dirichlet or Neumann boundary conditions. In

practice, it is impossible to obtain a simple closed form

function satisfying both equation (2.9) and a homogeneous

boundary condition for anything more than the most simple

boundary shape. However, boundary value problems for

arbitrarily shaped surfaces can be solved with a system of

integral equations formed from equation (2.13) and the

free-space Green's function.

In the absence of volume sources, equation (2.13) with

the free-space Green's function becomes
( ) .

S'

= (40(r ) f(r 0 r) - ip,(r)Gf(r )lda (2.17),
"S

where Yf represents the Dirichlet boundary condition, where

D.
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I.,

.- = AoV, and where the Neumann boundary condition YN has

been defined as -i8 y in anticipation of the identification

of the pressure field p and the related velocity field

[equation (2.4)] as useful boundary conditions in

experimental acoustics problems. Equation (2.17) is known

as the Helmholtz Integral.
2 9

This equation alone is inadequate for solving boundary

value problems, as it requires the specification of both the

Dirichlet and Neumann boundary conditions. This problem is

readily resolved with the help of two more integral

equations which relate the two boundary conditions, and

which can be derived from Green's Theorem with the

Free-space Green's function. However, before reviewing

these equations, it is best to introduce the terminology

used throughout the remainder of this work to distinguish

the region of the integration volume in equation (2.12) from

the rest of space.

Implicit in equation (2.17) is the fact that the point

10 is within the integration volume of equation (2.12).

Only radiating problems are considered here, and for all the

boundary geometries considered, a portion of the boundary

surface is off at infinity. The portion of at infinity is

an abstraction, of course, and so the main boundary surface _ -

of interest divides space into a generally finite bounded
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interior region and an infinite exterior region. The

integration volume in equation (2.12) is taken as this

exterior region for radiation problems. To distinguish

between points located in the two regions or on the

separating surface, points in the interior are subscripted

with I's, points on the surface are subcripted with s's, and

points in the exterior field are subscripted with f's.

With this terminology established, it is possible to

introduce the Interior Helmholtz Integral Equation. If the

point r is an interior point r, and hence, not included in
0

the integration volume of equation (2.12), the left-hand

side of equation (2.10) is zero in the absence of volume

sources. Instead of arriving at equation (2.17) with the

introduction of the free-space Green's function in the

remaining right-hand side of equation (2.10), the Interior

Helmholtz Integral Equation is obtained:

0 = ['o( s)aGf( 114s) -iY( s)Gf( rs)
S 7n

(2.18).

This equation relates the Dirichlet and Neumann boundary

conditions.

By allowing an exterior field point 4f or an interior

point rI to approach the boundary surface it is possible to

obtain another integral relationship between the two

boundary conditions from the resulting limit form of

"I
"'":--' '-""':'- -': ;d " 'i'- - . . " . . " . -, ". . . .. . . ...... . . . . .
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equation (2.17) or (2.18) respectively. Provided the normal

direction is defined at a surface point rs, and Y is

reasonably well behaved, it is readily shown that, in the

limit, these equations both reduce to

4 D(rs) = 2 D (rs)aGf(s- rs)da - 2i 4N(r)Gf(rs-rs)da3--f fA

S-E 2  S
(2.19),

where the first integral excludes an infinitesimal area E P

around the surface point ' This integral equation,

relating the boundary conditions, is known as the Surface

Helmholtz Integral Equation. The use of equation (2.18) and

(2.19) together to uniquely relate the Dirichlet and Neumann

boundary conditions for a general surface is discussed in

30Schenck's paper and in chapter V.

B.3 Rayleigh's Integrals and Fourier Transforms

For the special case of an infinite half-space enclosed

by a plane boundary topped with a hemisphere of infinite

radius, the solution of the Helmholtz Equation is much

easier to calculate. The symmetry of an infinite plane

makes it possible to construct Green's functions which

satisfy equation (2.9) in the half-space above the plane,

and which also satisfy either the homogeneous Neumann or
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Dirichlet boundary conditions on the plane. These Green's

functions can be used to generate radiating solutions to the

Helmholtz equation when all sources are below the plane,

since such solutions must diminish to the point where

integration over the hemisphere can be neglected. On a

plane boundary in a Cartesian coordinate system where

Po(x,y) or Y N(x,y) on the plane z = 0 is the boundary

condition, and where there are no volume sources, the

solution to the Helmholz Equation, as given by equation

(2.13), reduces to a two-dimensional convolution integral:

+(x,y,z) = 1w ,(x',y')Go,,(x-x',y-y',z)dx'dy'

(2.20).

The Green functions, G0 and G are known:1

G0 (x,y,z) = z(l-ikR)eikR

G2nYZ) zliRe (2.21)D 2 TR -.

and

IkR
G (x,y,z) -ie (2.22)N 2 rTR

where R2 = x2 +y2 +z2 . Historically, equation (2.20) for the

two boundary conditions (D or N) are referred to as the
31l

first and second Rayleigh integrals.3 1

For numerical processing, it is well known that a

convolution is more readily evaluated by using Fourier -,

Transforms.3 2  7 will denote the continuous, infinite

*. * .. . . . . . . . . ..... . . .- ml •.. ... . _ -



p. 28

two-dimensional Fourier transform of a function f(x,y) as

defined by:

F(kxfk) = Vtf(X,y)]Iy
1+001+00 kxt yl

- Cf(xI,yl)eX dxdyt (2.23),

and the inverse operation will be indicated as 9' The

domain of (kxfk) will be referred to as k-space, while that

of (x,y) will be referred to as real-space.

Applying the convolution theorem3 3 to equation (2.20)

yields:

,P(x,y,z) 7-t[P ,(kxtky)Go,(kx~kyfz)] (2.24).

The Fourier transforms of the Green's functions G. and G Nin

equations (2.21) and (2.22) may be found analytically.3

expfiz /k 2 -k -k~ 1 when k 2 +k2<k 2
I_ __ __ __ __ __ x y =

GM (k fk y (2.26).

-exp -z /k +k -k 2  when k 2 +k 2 >k~ 2
__ __ __ _ x y

The cicle k+k 2 -k i reere to astherdin circle.2x y=

Fo poxitk 1 ) inid th radatoncicl,.
0N

2. 2
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represents the z-direction phase change of propagating plane

waves, while for points (kx,ky) outside the radiation circle

G oN represents the rapid exponential decay of evanescent

waves. By defining a complex function I kz(kxtky)=

k2 -kx-k y , the transformed Green functions may be written
x y

in the condensed forms Go = exp(ik z) and GN exp(ik z)k

For holography or inverse scattering problems, the use

of equation (2.24) is essential, because in this way the

convolution integral (2.20) may be quickly inverted; that

is, the field Y(xyz ) may be deconvolved to yield the

source field Y. (xy). Assuming that (x,y,z) is known,

we have, from equation (2.24),

P N (xy) 7-"-P(kXky$Z )G-1 (kx  ky,z)] (2.27),

where G-' (kx kyZ) the reciprocal of the formula inD IN H

equations (2.25) or (2.26), provides the reconstruction of

both propagating and evanescent waves. Once the source

field Y ,INhas been determined, all other properties of the

field may be calculated.9  It should be noted that as far

as the processing theory is concerned, YD N(x,y) need not

correspond to a physical source surface. In fact equation

(2.20) may be generalized to apply to the field and its

derivative between any two planes, one at z and the other at
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zo lying between zero (the actual source) and z. The more

general equations are:

41(x,Y,Z)= J ojI L(x',y',z )G (x-x',y-Y',Z-z )dx'dy'
(2.28),

and

+00 +0

+(xyz) f i9(x' I'I z)G (x-x',y-y' z-z )dx'dyt

(2.29).

Equations (2.28) and (2.29) are the basis of planar

acoustic holography.

C. Definition of the problems

The first two sections of this chapter review the

fundamental equations of Nearfield Acoustic Holography.

This section defines the problems of Nearfield

Acoustic Holography treated in the remaining chapters.

C.1. Planar HoloQraphy

The evaluation or inversion of two equations (2.28) and

(2.29) represent four operations referred to as:

a) propagation of a wavefront, where Y(x,y,z) is

determined from P at z

.1

.1
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b) transformation and propagation, where (x,y,z) is

determined from aT/az at z

c) reconstruction, where +(x,y,z 0 ) is determined

from +(x,y,z)

d) reconstruction and inverse transformation, where

+(x,y,z 0 ) is determined from +(x,y,z).

Since by definition z>z >0 and zero is the actual source

plane, the reconstruction processes may be referred to

as the inverse propagation of a wavefront back toward the

source. When z = z0 in processes b and d, the process will

be referred to as a transformation.

In chapter III, the approximations and assumptions

necessary to reduce the infinite and continuous convolution

integrals encountered in problems a and b to a finite and

discrete form, suitable for high speed numerical processing,

are illuminated theoretically and tested numerically. To

evaluate the convolution integrals two assumptions are made:

first, the boundary field may be replaced with a patch-wise

constant field for reasonably small patches; and second, the

field is negligible outside of a finite region. With these

two assumptions, the problem reduces t,. one of representing
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the Green's functions GD and G N. Six methods of sampling or

representing the Green's functions are developed, and the

effectiveness of these methods are compared theoretically

and numerically.

In chapter IV, a numerical inversion method, based on

equation (2.27), to solve problems c and d is examined

theoretically. The suitability of the reciprocals of the

six Green's function sampling forms developed in chapter III

for use as inverse propagators with this method is examined

numerically. An iterative deconvolution method is also

presented in chapter IV.

C.2 Non-planar Holography

In the most general holographic experiment, neither the

source boundary nor the surface over which field data is

gathered is flat in cartesian coordinates or any other

separable coordinate system. Representing these surfaces

themselves is an important problem which is not encountered

in planar holography. Chapter V presents suitable methods

for modelling odd-shaped surfaces numerically and for

relating the Dirichlet and Neumann boundary conditions.

Numerical approximation of the three Helmholtz Integrals

form the basis of chapter V and VI.

r;. ?-;i . ..-i, .,: i. -- -ik- i - ::: :"-.-............-.............-..........-.-,..........,.--.........'....".-...-,".-.".........,.
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Chapter VI presents a computational method for

determing the boundary surface conditions of an odd-shaped

radiator from field measurements above the surface. The

results of simulated holograpy experiments which test this

method are also presented. The exact nature of these

simulations is fully explained in chapter VI.

I,

.-,,..-.-, . '.- .... . . .. . .. .. . .-.. - -....... .. .. - ,.--. -. .. .-
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Chapter III.

THE PROPAGATION OF PLANAR HOLOGRAMS

In Nearfield Acoustic Holography, a set of values,

either experimentally measured or theoretically generated,

of a field * or its normal derivative, at a number of points

evenly distributed over a planar, rectangular grid is

referred to as a planar hologram. As representations of

infinite plane boundary conditions, these holograms, with

the aid of Rayleigh's Integrals, equations (2.28) and

(2.29), can be used to calculate a representation of the

entire three-dimensional field above the hologram plane. In

this chapter, a computational method for determining this

3-D field is developed, and test results of this method are

reported.

A. Reduction to finite and discrete operations

The infinite, continuous integral operations reviewed

in the last chapter must be reduced to finite and discrete

approximations to allow processing with current digital

computing equipment. The validity of a solution obtained

with such an approximation depends directly on the validity

of the assumptions and method used to reduce the infinite,
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continuous relationships. It is the purpose of this section

to clearly delineate the methods and assumptions used to

reduce the propagation of planar holograms to finite and

discrete operations.

A.1 Rayleigh's InteQrals

The limits required to numerically evaluate the
formulas in equation (2.28) or (2.29) with finite, discrete

operations may be imposed by restrictions on experimental

data acquisition or restrictions on computation time and

capacity. In either case several basic assumptions must be

made. The first is that the sources of the wavefield T are

such that the boundary data 0 (x,y) or Y (x,y) is negligible

outside of some finite domain in real space. Denoting this

domain by -L/2<x<L/2 and -L/2<y<L/2, equation (2.20)

(likewise (2.28) and (2.29)] becomes:

'P(x,Y,z) 2 P I 0 (XI y')G DI(x-x',y-yIz)dx'dy' (3.1).

2 2

The second assumption is that the wavefield Y can be

represented sufficiently well with a discrete, as well as

finite, set of numbers. This set of numbers may be a data

set from experimental measurements at lattice points in

real-space or coefficients for a superposition of basis

71
-"

. . ....
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functions. For this model, the simplest case is chosen in

which it is assumed that the wavefield Y is not

significantly altered if the boundary field YON is replaced

with a piecewise constant field. That is, the L x L real

space domain is divided into N2 patches of size (L/N) x

(L/N), labeled with integers 1,m = 0,1,...,N-1, and the

discrete set of data Yo, (1,m) is assumed to be the average

of the actual boundary field over the patch. The field

radiated from the piecewise constant boundary field can be

assumed to represent Y if N is sufficiently large.

For the piecewise constant boundary field, equation

(3.1) becomes:

N-1 N-1 XI+A/ Y m+A/2
Y(x,y,z)= I P (I'm) G ,N(x-x',y-Y',z)dx'dy'1-0i m=O 'N ' zA/2fymA/2

(3.2),

with

xj= (1+1/2-N/2)6 (3.3)

y,= (m+1/2-N/2)A (3.4)

where a = L/N.

Finally it is assumed that it is sufficient to examine

the field %4 in any plane z at discrete points (XpYq)

defined as in equations (3.3) and (3.4) for integers p, q =

0 .... N - 1. By defining variables u = Xp-X', v =yq-y'.

equation (3.2) becomes:

:) :j ...i :. .. ,:i ;- %; :. .. -; : .; :; ?,. : .. ..., . .,,;: : ... , -,. ,? .: 2.
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1X +A/2Ym+A/2G D,N(X p-X',y q-y',z)dx'dyl

(p-I+I/2)A (q-m+L/2)A

f J GoN (u,v,z)dudv
(p-1-1/2),& (q-m-i/2)A

= 0  (p- ,q-m,z) (3.5),
D,N

with integers 1, m, p, q = 0 .... N-1. Letting Y(p,q,z)

9(Xp,yq,Z), the expression for the radiated field becomes:

N-I N-I
P(p,q,z)= y (I m) (p-l,q-mz) (3.6),I=0 m , N

which is the discrete, finite version of the Rayleigh

integral (2.20).

A.2 Discrete convolution

As with the infinite, continuous convolution, the

finite, discrete convolution in equation (3.6) is most

readily evaluated using the convolution theorem

and Fourier transforms (in particular, the Fast Fourier

Transform algorithm, FFT). Although discussions of the

discrete, finite convolution theorem may be found in

textbooks on signal processing, most treatments assume that

both arrays to be convolved are either periodic or zero for

indices outside the range 0 .... N-i. However, in the

discrete convolution in equation (3.6) one of the arrays,

GQ,(p-,q-mz) (defined in equation (3.5)] may be evaluated
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for all integers 1, m, p, q, because the Green's function

GN (u,v,z) is known analytically over an infinite domain.

Because of this exceptional feature, the discrete

convolution theorem must be rederived; the details of this

procedure are presented in Appendix A. Briefly, the results

are as follows:

The sequence YN (1,m) which is defined only for

integers (1,m) in (0,N-1) must be extended over a (2N) x

(2N) domain by adding zeroes This new sequence is defined

with:

f O'p(1,m) if O I<N and 0m<N
(1,) = ON(3.7).o, 1. 0 otherwise

The discrete Fourier transform DFT(f) of an array f(1,m)

with (1,m) in (0,2N-1) is defined (for Au=0,1 .... 2N-1) as:

2N-1 2N-1 -in(L+mv)
DFT(f) = I I f(1,m) e (3.8),

1=0 m=O

and the inverse is indicated as

IDF(1 2N-1 2N-1 +irr(ljfmt')IDFT(F)Im 2 1 F=0 v=) e (3.9).
4N2  =O V=O

As shown in Appendix A the finite discrete convolution (3.6)

can be calculated with:

Y(p,q,z) = IDFT(DFT[Y , N] g, ,(z)) (3.10)

where

90 (z) = DFT(G (z)] (3.11)
ON V (
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with

r3 0N I(, z) if 051< N and 05m< N

mZ) G N(1-2Nmz) if N51<2N and 05m< N,N (,m,z (3.12).

DN .(/.m-2N,z) if 0 1< N and N5m<2N

,(I- 2N,m-2N,z) if N 1<2N and N5m<2N

A.3. The Green's Functions

Equations (3.10) and (3.11) form the computational

basis for wavefront propagation in which (p,q,z) is

determined in any plane z>0 given the data Yo, (Im), (Im)

= 0,...N-1. The data manipulation simply involves adding

zeroes to the data sets to form an extended (2N) x (2N)

domain, performing a two-dimensional DFT on the extended

data set, multiplying by a "propagator" g (z), and then

performing an IDFT. The computational difficulty lies in

evaluating the propagator array g (z) which must be

accomplished for each value of z and k (if the radiation

involves different wavelengths X). If equation (3.10) is

used, then it is necessary to evaluate the integral in

equation (3.5) which defines ,*'Since the integration

cannot be performed analytically, it must be-evaluated with

some approximation. Two easy ways of doing this are:

* * *""
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1) Replace G D,N(u,v,z) in the integral in equation (3.5)

by its value at the center of the integration patch;

i.e., GO,N(u,v,z) G (,N[(p-l)A,(q-m)A]. The resulting

propagator g 1 )(5) is as defined by equations (3.11)0, N U " -

and (3.12) with G ,N replaced with:

Z(l (r s z) = (L/N) G (rA,sA,z) (3.13),

D ,N DO,N

where r,s = -(N-l) .... 0 .... N. is the discrete

transform of the analytic Green's function sampled at

discrete points in real-space. The Green's function

O,N(rA,sA,z) is singular where r = s = z = 0, so when

r = s = 0 and z is less than one t-nth of a wavelength,

an analytic integrated average of the Green's function

is used. This integration is over a circular area

equal in size to the sample lattice square area, A2 ;

the details are in Appendix B. This form is refered IN

to as the "sampled real-space Green's function."

2) Replace GD, (u,v,z) in the integral of equation (3.5)

with a polynomial expansion about the center of the

patch. A procedure for accomplishing this is presented

in Appendix B. The resulting approximation for , is
D , N

given the symbol ;(2)(r,sz) with rs=-(N-1),..,0,..,N.
0 , N
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g (z) is as defined by equations (3.11) and (3.12)

with Go replaced by d(2); this form is referred to as

the "integrated real-space Green's function."

In the derivation of equations (3.10) and (3.11) the

definitions of the real-space sampling points given by

equations (3.3) and (3.4) were used. Because the DFT

requires an even number of sampling points, the definitions

(3.3) and (3.4) result in an asymmetric distribution of

points in the sampling of the Green's function [as in

equation (3.5)]; that is, there is an odd point at the

origin, N negative values, and N-1 positive values. By

redefining the real-space sampling, a symmetric distribution

of points may be obtained; the Green's function will then be

sampled over patches centered at (rA + A/2, sa + A/2). This

shifted form of equation (3.5).is:

(r+1)A (s+1)A

G DI(r,s,z) = N G (u,v,z)dudv (3.14),

rA SA

with r,s = -N,...,0,..(N-l). If a sampled approximation to

G D, is used in equation (3.12), then one obtains the

"shifted sampled real-space Green's function," g(3 (z)

When an integrated approximation to G N is used in equation

(3.12), one obtains the "shifted integrated real-space
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Green's function," g 4 () Use of the unshifted Green's -

functions is equivalent to replacing the field T(x,y,z) with

a patchwise constant field where each sampling point is

centered in a patch; use of the shifted form corresponds to

having the sampling point at one corner of its patch. If

the same set of field values qoN(1,m) are used for the

sample points in both cases, the net result is a shift in

the apparent location of the represented fields. This shift

should be considered when theoretical fields are used, but

it is of little consequence with experimentally measured

fields, because with an experimentally measured field, there

is always an ambiguity of half a sample spacing in the x and

y directions when deciding how to represent the field with a

patchwise constant field. Throughout this study, wavefronts

propagated by the shifted Green's functions are compared to

theoretical fields shifted -A/2 in the x and y directions.

In order to determine g W (z) from equation (3.11),

it is necessary to perform the DFT operation. However, in

the infinite and continuous formulation in equations

(2.24-2.26) the Fourier transformed Green's function

GON (kx,kyz) has a known (fairly simple) closed form. If

an approximation for g (z) can be found in terms of

GO,N (kx,kY z) in equations (2.25) and (2.26), then g ,N(z)yn

could be calculated without having to perform a DFT.

. . .. .
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In order to derive such an approximation, equation

(3.11) giving g ON(z), is expanded using equations (3.5),

(3.8), (3.9), and (3.12), and the periodicity of the Fourier

coeifficients, exp(-inj±/N] = exp(-i.y(1-2N)/N] is used.

Equation (3.11) can then be written as:

N-i N-i -in(r+ (r+I/2) (s+±/2)
go DN(z)J.V= 1 2 e - DG0 ,(x,y,z)dxdy

r=-N s=-N (r-Ll2)6 ( -/ 6
(3.15).

The Fourier transform of GoN is expressed explicilty as:

D ,, N
Do,N(kxfkyZ e GoD,N(x,y,z)dxdy (3.16). 1

In the following steps, the right-hand side of equation

(3.16) will be approximated and compared with equation

(3.15), providing a relationship between the GoN and g
0, N o-N

The integral of equation (3.16) is broken into a sum of

patch integrals where exp(-i(kxX+kyy)] is approximated as

constant over each patch. The result is Go G where:

GDN(kxkyz) =

(r~i2)A(5+1/2)A
e G (x,y,z)dxdy

r=-oo s=-~ 0 N

(3.17).

An estimate of the error from approximating exp[-i(kxX+kyy)]

as constant over each patch is shown in Appendix C to be:

S • . -. . . . . . . . °- . . . . .
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k y
G' (k x , ky z) kx kyA

G ,N(kx ky z) 4 sin(kxA/2) sin(kyA/2)

This error is limited if the 2N values of kx and ky are

chosen so as to minimize the distance from the origin in

k-space. This restriction along with consideration of the

Fourier coefficients in equation (3.15) motivates the

definitions:

r Tif 0 <N

kxj ±(M-2N) if N 5 j < 2N(3.19)

NA

and similarly k in terms of v. Evaluating (kxlky) at

(kxj,ky ) and using equation (3.5) defining G ,N, equation

(3.17) can be written:

G D,(kx ,ky ,z)

N-i N-i -in(r+sv)
X e -G (r+2mN,s+2nN,z)

r=-N s=-N m=- n=- O,N
(3.20).

The m=n=O term is simply g D,(z) , so that equation (3.20)

can be written as:

G (k k ,z)
D ,N Xj±' yLI

N-i N-I -in(rji+sv) - 0
go N(z) u+ I X e __ 2 (r+2mN,s+2nNz)

' Ii' r=-N s=-N m=- n=-_ DN
(m=n)90 (3.21).

One should note that if GoN(kxky ,Z) replaced

g 0 ,(z) in equation (3.10), only the m=n=O term of equation
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(3.20) [the g (z) term in equation (3.21)] will yield

the result desired as in the discrete convolution of

equation (3.6). The summmation remaining in equation (3.21)

effectively extends the range of the summation in equation

(3.6) to include the infinite periodic extension of the

finite input data field. This extension may be viewed as

representing an infinite set of fictitious image sources; an

apparent copy of each field point is located at all of the

points (x+2mL,y+2nL) for all pairs of integers (m,n). These

fictitious image sources can produce large errors in

numerical calculations of propagation.

If G0 ,N (x,y,z) falls off rapidly with x and y, then

GoN (x,y,z) also falls off rapidly, and the effects of image

sources will be small. In this case the summation in

equation (3.21) may be ignored, and equation (3.21) then

shows that GoN(k k Z) approximates g,(Z) directly.

This approximation is called the "sampled k-space Green's

function", is labeled g 5D(z) , and is defined by:

(5 (z) = Go (k k Z) (3.22).0o 1 A , N kx 'kyu

On the other hand if G0  (x,y,z) does not fall off

rapidly, then the sum in equation (3.21) may be significant

and Go, may be an unacceptable approximation of gO,N"

Inspection of equations (3.16-3.21) shows that this sum

= II
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could be reduced if GO N(xly,z) in equation (3.16) were

B-

replaced by GON (x,y,z) multiplied by a suitable window

function W(xy). This window function should have a value

near unity for x and y in the range [-L,L] and should fall

off rapidly outside this range. Such a window would reduce

any fictious image sources without introducing any new

error.3.1 A simple closed form function G' is sought such

that:

,,0 + e - i (kx+kyY)

G11(kxfkyZ) = W(x,y)G N(x,y,z)dxdy

(3.23),

and the same process outlined in equations (3.16-3.21) yield

an expression analogous to equation (3.21):

G10, (kxk ,k z) g (z) +

N-i N-i -irr(rj±+sv) 0
E e Z W(r+2mN,s+2nN)C°  (r+2mNs+2nNz)

r=-N s=-N m=-o n=- ,N
(m=n)0O (3.24).

Because of the window function, this summation is not as

significant as that of equation (3.21) regardless of how

fast G0 N(x,y,z) decreases with increasing x and y.

Ideally the value of the window function would be unity

within the limited range (corresponding to m=n=O) and zero

outside, but neither equation (3.23) nor its equivalent

convolution integral in k-space yield a simple closed-form

expression for such a window. The goal here is to reduce

the computation time of g (,NZ). in equation (2.11);

J• ".
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therefore a window for which equation (3.23) can be

evaluated analytically is necessary.

The "radial sinc function," 2J (k0 r)/k 0 r (J (z) is the

first order Bessel function, k,= n/L, and r2 = x2 + y2 )] is a

suitable window function. It does provide a simple and

closed form expression for G" . This window function
O,N

reduces the sum in equation (3.23) so that G" ,(k k ,z)
0,N Xii' yv

more accurately approximates g ,N(Z) u than

GDN(kxyky.,Z). Using the convolution theorem, it can be

shown that G" for this window is approximately an
D, N

integrated average of GoN over an annular region around

points (kxiky). This function G" is the integrated0,N

(6 () • which is "
k-space Green's function, labeled go, (z)) wc

defined as
3 5

fkr+k 

r
GkkGON(k,z)kr. dk, kr ko

2krk 0 fkr-k °

6)(z) =J (3.25)
2- fk O G D, (k ' z)k' dkr' kr=0

0 0

where k k + k 2  Closed form evaluations are presentedr XJI y"

in Appendix C.
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-p.

B. Qualitative examination of the Green's functions

and their dependence on propagation distance

In the preceding sections it was shown that although

analytic expressions exist for holographic processing with

uniquely specified Green's functions, the use of finite and

discrete expressions, as requircd by data acquisition of

digitial processing, introduces errors. To reduce these

errors, the exact analytic Green's functions or their

Fourier transforms may be sampled or represented in various

ways producing improved finite and discrete expressions.

Covering a wide range of possibilities, six different

discrete forms, g l)(z) through g(6) (Z) have beenD , N LV DN

introduced. In the next section a realistic computer model

will be used to find the best discrete form for a given

situation. Before doing a quantitative comparison, it will

be worthwhile to examine the exact Green's functions to gain

a qualitative understanding of the sources and corrections

for the errors encountered in going from the continuous

analytic expressions to discrete and finite forms.

An important parameter affecting the nature of the

Green's functions is the propagation distance z; the Green's

functions, equations (2.21) and (2.22), and their Fourier

transforms, equations (2.25) and (2.26), change

..............................................
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significantly as z varies from a fraction of a wavelength to

several wavelengths. This particular range of propagation

distance is of great interest in NAH applications. In this

subsection, plots of the Dirichlet and Neumann Green's

functions and their Fourier Transforms are presented for

propagation distances of a fraction of a wavelength and

several wavelengths.

B.I. Dirichlet boundary conditions

The analytic Fourier transform of the Dirichlet Green's

function, equation (2.25), is plotted in Figure 3.1a for the

small distance z/X = 0.13 and extending over a typical range

of k with ky= 0. The slowly-varying nature of the functiony

allows for easy sampling with a uniform spacing of points

(kxky).

The real-space function, equation (2.21), for the same

distance z/X is plotted in Figure 3.1b. Since the source

fields considered in this paper are assumed to be negligible

outside a region of length L, the Green's functions in

real-space need only be considered in the range (-L,L).

However, in contrast to the k-space form, the spiked shape

of the real-space function makes it difficult to sample with
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0 1.0 I

z/X=0.l 3() z/03(b
0 C
C
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*0 CL
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0.0..
L00.

-S.0O -2.5 0.0 2.5b 5.0 -4.0 -2.0 0.0 2.0 4.0
waveriumber (ko/k) displacement (X/X)
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0
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-1.0 __ __1.0__ _ __ _
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wavenumber~ (ko/k) displacement (X>))

Fig. 3.1 The real part of the Dirichiet pressure Green's function plotted
over typical ranges (a) in k-space and (b) in real-space for small propagation
distance and (c) plotted in k-space and (d) in real-space for more than three
wavelengths propagation distance.

2.I
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a finite number of points with regular spacing; it becomes

impossible as z goes to zero and the function becomes

singular.

Figures 3.1a and 3.1b suggest that for small distances

(z/X < 0.5) a direct sample of the k-space Green's function

will yield good results. This expectation is also
(5)(

consistent with the relationship of g ,(z) to g (z)

developed in section A.3. and summarized by equations (3.21)

and (3.22). Since most of the area under the curve of

Figure 3.1b is contained in a relatively small area around

x=y=O, the sum in equation (3.21), which quantifies the

fictitious image source error, will be very small, and hence

go~(z) will be represented well by g (5 ) . For small

distances z/X, conditions are not favorable for the direct

sampling of the real-space function due to the singularity

at x = y = z 0. Instead of a direct sampling of the

real-space function, a more sophisticated approximation of

the integration in equation (3.5) is needed, such as g(2)(z)

or g 4 )(z).

Figures 3.1c and 3.1d are plots of the analytic

transform and real-space form of the Dirichlet Green's

function for z greater than three wavelengths (z/X = 3.1).

The analytic transform represents the real-space Green's

function of infinite extent. This function does not fall off

. .
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rapdily in real space, and this shows up in k-space as the

rapid oscillations of Figure 3.1c which are very difficult

to sample directly as in g(5)(z). The Green's function for

this distance might be represented by the integrated average

k-space form g 6 )(z); however, the slow variation evident in

Figure 3.1d suggests that a direct sampling of the

real-space function will be an adequate representation of

the propagator. Using one of the real-space Green's

function forms, g(l)(z) through g(4)(z), along with
DD

augmenting the data field with zeros as in equation (3.6),

will eliminate the fictitious image source error.

B.2. Neumann boundary conditions

The analytic transform of the Neumann Green's function,

equation (2.26), is plotted for small z/X in Figure 3.2a

while the real space function, equation (2.22), is plotted

in Figure 3.2b. Unlike the well-behaved function plotted in

Figure 3.1a the singularity of the k-space Neumann Green's

function makes it unsuitable for direct sampling as g(5)(z).

The integrated average, g 6 )(z), is necessary to sample the

Green's function from k-space. While the k-space function

. . . . . . .. . . . . . . . . . . . . . .
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C 1.0- 0 1.0-
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Fig. 3.2 The real part of the Neumann Green's function normalized to the
largest value p lotted and displayed over ty~pical ranges (a) in k-space and (b)
in real-space for short propagation distance, and (c) in k-space and (d) in
real space for a few wavelengths propagation distance.
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is singular on the radiation circle k2 + k2  k2 for allx y

distances z/X, the real space function is singular only at

the point x=y=z=O. This singularity presents no computa-

tional problem if either g(2)(z) or g(4)(z) is used to

represent g (z).

The k-space form of the Green's function for Neumann

boundary conditions at the larger distance z = 3X, depicted

in Figure 3.2c, shows the same rapid oscillations as the

Dirichlet version, and it is also singular on the radiation'

circle. The integrated form g 6)(z) must be used if a

k-space Green's function is used, but again, the slow

variation of the real space form, Figure 3.2d, suggests

using one of the real space forms gl)(z) through g4(z).

The eight plots of the Green functions presented are

representative of all the cases studied. They are intended

to serve as a basis for understanding the results of the

computational experiments presented below.

C. Quantitative comparison of the sampled Green's functions

The purpose of this section is to present a

quantitative comparison of the effectiveness of the six
-~~~(6)(z hn[[

sampled Green's function forms, g l)(z) through g,(z) when
D ,N Do
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they are used in each of the four processes: propagation,

transformation, reconstruction, and inverse transformation.

The comparisons span a suitable range of separation distance (M

between the input and output fields for each case. To

compare the six forms, readily calculated fields YO(x,y,z)

and (xy,z) of a tractable, theoretical boundary condition

P (x,y) are used. These fields are used as simulated input

fields, or holograms, and as absolute reference fields in

comparisons of the six output fields. An output field

41(i)(xyz) or x y,z) is associated with each sampled

Green's function g(i)(z), i = 1,...,6, used in the numerical
D , N

processing of the input data.

Since the processing problems which have been discussed

have direct relevance to Nearfield Acoustic Holography it is

natural to test and compare the different Green's function

froms g(i)(z) in simulated experiments with an acoustic
D0, N

pressure field, Y(x,y,z) = p(x,y,z). The Neumann boundary

condition, and -i zp(x,y,z) for any z, are specified in terms

of the z-component of the particle velocity defined by

-i aZ"
vz(X,y,Z) = c p(x,y,z) (3.26),

where pc is the characteristic acoustic impedance.

7- l
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C.1. A theoretically tractable boundary condition: the

baffled piston

The computationally tractable and relatively

nonsingular acoustic pressure field of an oscillating piston

in an infinite baffle is used for the NAH simulations. In

particular, the chosen source is a baffled piston of radius

a = 3.44/k and surface velocity amplitude u0 . This source

radiates into a medium with a characteristic impedance pc.

Calculating the theoretical field for each field point

requires the evaluation of a one-dimensional integral with

fixed limits. From equations (2.20-2.22 and 3.26) the

fields produced by the piston are given by
v 2.^rrkaek

p2(Xyz) 0ipcku f rdr de (3.27)

and

2nrka ek

°4(x'yz) = -- ka f z(l-ikR) e 3  rdr do (3.28),Vz 2 T

where R2 = (x2 + y2) + r2 - 2(x2 + y2)1/2 cos(e)+ z2 .

Equations (3.27) and (3.28) can be reduced to the

following one dimensional integrals:
3 6

p0(~y~)=0cu{ eikR[ +bbo cos( )) fde + a(b)eikz}polxYZ ) Pcu(. )2YT f O I + b a  2b cos(e)
(3.29)
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and

v=(xyz) u TT- eikR[ b cos(e) - de + a(b)eikz
z 2n R 1 + b - 2b cos(o),

(3.30),

where b2  (x2 + y2 )/a2 and

0, b>l 
a(b) = r , b = I

2n , b < 1

C.2. Sampling the theoretical field

By numerical integrations of equations (3.29) or (3.30)

with a fixed value of z, the fields po(x,y,z) or vz (x,y,z)

are evaluated at each of the coordinate locations (x ,Ym),

defined in equations (3.3) and (3.4), yielding a 64 x 64

array. Each element of the array is a complex number

specifying the field amplitude and phase at the point

(xl,ym,z). Elements of these arrays are written as Pom or

V0 with the value of z taken from context if not explicitly

indicated.
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C.3. Quantifying the error in the output fields

In order to evaluate the relative accuracy of the

different Green's functions the output fields Tm4) processed

with g(') are compared with the reference fields pm or

D,N

Vimp and an average difference and standard deviation are

determined. All quantities are normalized by the largest

magnitude of the reference field in the array.

The difference in the real (Re) and imaginary (Im)

parts at each point are defined as

R (i) - /e(3.31
Am = mRe [) Re[ 41m ]} max[J4,0ml] (3.31)

and

S = {Im[4)] - Im[410m ]} / max[I9'mI] (3.32).

The average difference is defined as

I'V A(i) + A im 8192 (3.33)

1=0 m=0 O

and the standard derivation is

i 63 63 R(i) ( )]+[ lm - (i)] /8192 i/2
1=0 m=0 /8 9 2

(3.34).

The results of each case are summarized in a chart such as

that of Figure 3.3a. A bar is drawn for each function

_ . , .. . . . . .." -- S--*_ -
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g z i = 1 to 6, with'the center drawn a distance A from

the zero axis while the top and bottom are drawn a distance

+a and -a from the center.

To further illustrate the effectiveness of each method,

several plots are presented which display a central cross

section of either the real or imaginary part of the output

field TM represented by crosses, against the corresponding

reference field P1m or vim represented by a solid line.

cC.4. Test results for wavefront propagation

In this section, charts and plots are presented which

quantify and illustrate the effectiveness of the sampled

Green's function forms when used to propagate a pressure

wavefront and to transform and propagate a z-component of

the particle velocity wavefront. As defined in chapter II,

these processes are the numerical evaluations of equations

(2.28) and (2.29) for fixed z-z0 > 0. Data for four

different values of (z-z )/A are presented (to simplify

notation in the figures (z-z0)/A is written z/X).

The chart in figure (3.3a) graphically displays the

average differences Z(i) and standard deviations (i) of the

output fields p(i)(z=0.006A) from the field p0

I............I.......
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z/X=O.O (a)0.05

0
L 0

-0.05 .
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samplin 9 form

z/I =0.06 (b)0.03_
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Fi7. 3.3 The normalized error (defined in eguations 47 and
48) produced by each of the six Green's function sampling
methods when used to propagate the pressure field
progressively larger z-dastances, (a), (b), (c), and (d)
from an inpuY theoretical baffled piston pressure field.

.. d'...|
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when the input field is the pressure at the theoretical

piston source boundary, pom(zo=O). The k-space Green's

function, equation (2.25), is well behaved for small (z-z3 )

and so requires only a simple representation; figure (3.3a)

shows that g (z-z() and g 6 (z-z) do yield good results

for very small propagation distance. The real-space Green's

function, equation (2.21), is nearly singular for small

(z-zo ) and so requires a sophisticated represenation; figure

(3.3a) shows that, of the real-space forms, gD (Z-Z0 )

yields the best results for very small propagation

distances.

The input field for the chart of figure 3.3b is again

Plm(Zo=O) while the six output fields are p ) (z=O.13X).

At this distance, all six functions yield good results.

For the chart in fiqure 3.3c, the input field is

plm(z0=O.13X) and the output fields are p )(z=l.lA). At

this distance the error from any of the real-space forms is

about one third that of either k-space form. There is little

difference between the errors from the four real-space

forms. In general at yistances (z-zo) A/2, the real space

forms, g(,)(z) through g(4)(z), provide better results than

the k-space forms.

- I -. a . . --.
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For a propagation distance of several wavelengths, the

chart in figure 3.3d indicates that all of the real-space

Green's function sampling forms g( 1 )(z) through g(4 )(z)

yield similar, good results. The relative error of the the

k-space forms grows quickly with an increase in propagation

distance with g(5) giving the largest error. This large

error is due to unattenuated fictitious image sources.

The charts of figure 3.3 suggest that the shifted,

integrated real-space Green's function g(4)(z) is the best

choice for a single function which will yield good results

over the range of (z-z considered here. The plots of

figures 3.4 and 3.5 further illustrate the deficiencies of

the other functions in comparison with the merits inherent

in g(4)(z). In figure 3.4a a central cross section of the

(3)(z00 6 )i lte
imaginary part of the output field plm(z=o.oo6X) is plotted

with the imaginary part of p~m(Z=0.006X) while the same is

done for p(4)(z=OOO06X) in figure 3.4b. In both cases the

propagation distance (z-z0 ) was 0.006X. Figure 3.4a shows

00

tha 3)~ underestimates the imaginary part of the field

(4) i uhbtewhile figure 3.4b shows that p i mcmbte

d..

Imm
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Fig. 3.4 The imaginary part of the pressure 0.006
wavelengths from the plane of a theoretical baffled piston
source generated from an input pressure field sample taken

(3)at the source using (a), plus signs, g9 (z) and (b), plus

signs, g(4)(z) against the theoretical field, solid line.

.t .. . . . . . . . . . . .- . . .-. . -. IilI .. . . I I



TV-7L

0.4 p. 64

D

0

L

D( 0

0-
-0.2 - __ __ _1___ _1___ _ 1_

-2.0 -1.0 0.0 1.0 2.0

displacement (x/X)

'0.4-

n0.2-

D 0-
a,)

-0.2 I

-2.0 -1.0 0.0 1.0 2.0

displacement (X/X)

Fig. 3.5 The real part of the pressure 3.1X from the plane
of a theoretical baffled piston source generated from an
Input pressure field sample taken 0.13 $L from the source
using (a), plus signs, gy,5 )(z) and (b) plus signs g(4 ) (z).
Theory is the solid line.
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equation (23), g 3)(z) apparently cannot represent the
Dhe

behavior of the nearly-singular real-space Green's function

at very small distances. The higher order approximation

g(4)(z) does appear to represent the effect of this behavior

well.

For propagating over distances of a wavelength or more,

the effects of image sources should degrade the performance

of the k-space forms g(5)(z) and g(6)(z). Figure 3.5a

clearly shows an interference effect from these image

sources in the plot of p )(z=3.2X) against pom(z=3.2X)

where (z-z0 ) was 3.lX. The integrated real-space form does

not suffer from any fictitious image source error as can be

(4) [.
seen in figure 3.5b where pm (z=3.2X) is compared with

PIm(Z=3.2X), the same conditions as in figure 3.5a.

The charts and plots of figures 3.3, 3.4 and 3.5

compare the utility of the six Green's function sampling

methods when used in the numerical evaluation of equation

(2.28). The charts and plots of figures 3.6, 3.7, and 3.8

do the same type of comparison for numerical evaluations of

equation (2.29). The chart in figure 3.6a displays the

average differences Z(i) and standard deviations a(i) of the

output fields pi(z=O) compared to the reference field
Im( c rh f e
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Fig. 3.6 The normalized error produced by each of the six
Green's function sampling methods when used to propagate the
pressure field progressively larger distances, (a), b),
c), and (d), from an input theoretical z-component of the

particle velocity boundary field.
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p0m(Z=O). The input field is the normal component of the

surface velocity at the theoretical piston source boundary,

(z=). Functions (4)(Z) and g(6)(z) yield the best

results for this transformation from Vom(Z0=O) to p )(z=O).

Unlike the functions g(i)(z), there appears to be no

value of (z-z0 ) where all g~i)(z) produce similar results;

this can be seen in figures 3.6a through 3.6d. The function

g(4)(z) yields as good results as any function over the

range of distances (z-z ) considered. The real-space forms

g 2 )(z) and g(3)(z) are only slightly inferior to g(4)(z)

for use when the distance (z-z0) is small. The real space

form g$l)(z) starts out the worst of all six forms and

steadily improves with propagation distance while the

k-space forms decrease in performance with increasing

propagation distance.

Figures 3.7a and 3.7b compare with pom(z=O) the fields

Plm (z=O) and pm(z=O) respectively as produced with

g(5)(z=0) and g(4)(z=0). Against pom(z=3.2X), the fields

:)(5) and (4)(Z=3.2X), as produced with g(5)(z=3.2X)aIM (z=3.2) Im " i "rs ad

.,and g 4)(z=3.2X), are compared in figures 8a and 8b [
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respectively. In both figures 3.7a and 3.8a, the effects of

fictitious images introduced by g(5)(z) are seen. By

aretsen.uB

contrast both 3.7b and 3.8b show the good agreement obtained

with g(4)(z).

D. Conclusion and summary

Over the full range of distances (z-z0 ) considered and

for both propagation'problems and problems of transformation

and propagation, the shifted integrated real-space Green's

functions g(4)(z) appear to yield consistently good results.

This consistency makes this form ideal for computation.

Section III developed the theory for approximating the

infinite and continuous integrals with finite and discrete

forms. The approximation was based on two main assumptions:

First, the boundary field can be neglected outside of a

finite region, and second, this field can be adequately

represented by a patchwise constant field for reasonably

small patches. If these two assumptions are satisfied, it

was shown that the problem was to represent the known

Green's function in a discrete form, and six methods for

accomplishing this were developed. A qualitative

examination of the actual form of the Green's functions was

given in section IV. This was done to identify the
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difficulties in representing the Green's functions and to

identify how these difficulties might be overcome by one or

more of the six methods. The results of testing presented

in section V.E suggest the use of the shifted integrated

real space Green's function, g(4,(z), for acoustic

propagation problems. The results show this form produced a

minimum of error for propagation distances from zero to

several wavelengths.

N.'

.... .-- -,-...- .....-- .. ,...-.... .......... ....- ,. .
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Chapter IV

SOURCE FIELD RECONSTRUCTION FROM PLANAR HOLOGRAMS

In this chapter, the inverse of the problem considered

in the last chapter is examined. Here it is assumed that

a known planar hologram (p,q,z H accurately represents the

field in the hologram plane, and that the field between the

hologram plane and the source plane, z=O, is sought.

In the first section of this chapter, the numerical

reconstruction of source fields is developed as a direct

approximation to the continuous formulation of equation

(2.27). This is essentially the technique suggested in the

original Nearfield Acoustic Holography paper I with minor

improvement.

The second section presents test results illustrating

the suitability of the reciprocals of the six Green's

function sampling methods, developed in chapter III, as

inverse propagators with the method of section A.

An important original contribution of the first section

of this chapter the definition of error sources in the

numerical method there described. The identification of

these errors motivate the search for alternative

deconvolution methods, and in the last section, an

alternative numerical source field reconstruction method is

dl--

U
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presented. This method is based on the theory developed in

chapter III That theory led to equation (3.6) which can be

written in matrix form:

N2 -11
4(r,rz G (z ) y (s) (4.1)H s= 0  D,N H rs D , N

where the N2 unique index pairs (p,q) and (1,m) of equation

(3.6) are themselves indexed respectively by the indicies r

and s, and where the elements of the N2 x N2 matrix

G) (z are G,(p-l,q-m,z H. The source field
L(D,N) H jrs D, NH

reconstruction problem would be solved by inverting this

matrix, but inverting this matrix for large N would require

excessive computational capabilities and will preclude easy

high speed data processing. The stability of such an

inversion is also suspect. However, iterative methods for

solving this equation without inverting the matrix are quite

feasable. Such a method for solving equation (4.1) is

presented in section C.

A. Deconvolution with the Discrete Fourier Transform and

Smoothing

For the case of infinite and continuous fields, the

convolution theorem provides an exact formula for the

deconvolution or reconstruction of Y,N (xy) from Y(x,y,zH),
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as in equation (2.27). It would be tempting to try the same

technique with the discrete convolution given in equation

(3.10). One could write

Y;,N (1,m) = IDFT[DFT{M(p,q,z ))/g 0 ,I(z )] (4.2).

However, equation (3.10) can be derived (without approxima-

tions) only if the DFT is defined for a 2N x 2N domain.

Equation (3.10) was found by assuming that Y' was

zero at the extra points in the extended domain. In order

to evaluate equation (4.2), the (in general non-zero) values

of Y(p,q,zH) must be known at the extra points in the

extended domain. However, in holography the hologram data

is defined to be the N x N array Y(p,q,zH). Although N can

be redefined so that the hologram data covers the (2N) x

(2N) domain, it is almost certain that the data measured

outside the N x N domain do not correspond to the ideal

values compatible with the derivation of equation (4.2).

Furthermore, one must consider the possibility that for some

(p,u) the array element g ,N(z) may be zero; in the ideal

case DFT(Y(p,q,z H)) will also be zero and the quotient in

equation (4.1) will be indeterminate. If Y(p,q,zH) is the

data measured over the 2N x 2N domain it is very unlikely

that DFT(Y(p,q,z )} will be exactly zero, so that its use

in equation (4.1) may lead to serious computational errors.

Thus for measured hologram data, equation (4.1) cannot be
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a.

used directly, and the source field reconstruction problem

must be reformulated.

-4

A.1. Restrictions on the input field

Another approach to the inverse scattering problem is

to assume that both TJ,. (xy) and (xyz H) are negligible

for sufficiently large x and y. This is especially valid in

Nearfield Acoustic Holography, where the hologram data is

measured as closely as possible to the sources, which are

assumed finite in size. The measured hologram data is

assumed to comprise the N x N array T(p,q,zH), for p,q =

0,1 .... N-1. As already mentioned, equation (10) provides an

exact deconvolution formula for infinite, continuous fields.

This equation can be employed by approximating the infinite

continuous Fourier Transform of the hologram field

'(x,y,z ). With the assumed finite extent of T(x,y,z ) the

DFT of the hologram data Y(p,q,z ) is a logical choice for

such an approximation, but the DFT of a sampled field will

differ from the continuous field transform. The nature of

this difference must be considered, and the DFT results must

be corrected.

.%

S. - .. . *
- - '-4444.

:4 . . . . . . . , .. ; ' '~*~
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A.2. Deviation of the DFT from the Fourier Transfrom

In appendix C it is shown that the DFT of a piecewise

constant field deviates from its continuous transform as
DFT[,lx,y)] = kx A k(43

,(kxj,, ky) 4 sin[kxYA/ 2] sin[kyu&/2]

The field (x,y,z H), is assumed to be adequately represented

by a piecewise constant field with the field value of each

piece given by one corresponding hologram datum value.

Equation (4.3) is therefore relevant, and it indicates that

while the DFT of the hologram data will provide reasonable

estimates of the transform field for small kxL and ky u , it

will overestimate the higher spatial frequency region.

Compounding any error introduced by the DFT or noise in

the input data is the exponential growth of the reconstruc-

tion kernel G- (z) in equation (2.27) with spatialD, N

frequency and reconstruction distance. This problem

suggests two things: First, some form of filtering in

k-space will be necessary; and second, deconvolutions or

source field reconstructions which include the evanescent

wave information must be restricted to small z distances.

Undersamping in k-space is another source of error

which may manifest itself if either Y(kxkyZH) or

.. ..- I
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G-1, (kxkyz) varies rapidly over the DFT sampling intervals
OiIr

Ak x and Ak y. Undersampling can be avoided by reducing the

k-space sampling intervals. When using the FFT, this sample

spacing is most easily reduced by augmenting the hologram

data Y(p,q,z n with zeroes in the same manner as in

ON(l,m) of equation (3.7) and performing the FFT of the

2N x 2N zero augmented hologram array. This extended array

is labeled YI(p,q,zH) in analogy with Y (I'm).

A.3. A smoothing function

Based on the above considerations, equation (2.27) can

be approximated as follows:

41, (.( m)=IDFT(W(k,,'ky )'DFT[4'(P , q,z )]*G-1 %Ikx ,kyvlZ }

(4.4)

where W(kx ,kyu) is a suitable filter funtion and Y'(p,q,z )

is the hologram data augmented with zeroes. For the

reconstructions presented later in this paper, the following

filter function was used:

1- e(kr/kc- 1)/a kr : kc
2

W(kx),ky t)= (4.5)e(l - kr/kc)/a k > k
r c

where k = k2 + k 2  and k and a are adjustable parameters
r XY Yl) r
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of the filter. Experience has shown that a value of kc

equal to 0.6 (N,/L) and a value of a equal to 0.2 yield

consistently good results. In a particular experiment it

may be desirable to change these parameters, or possibly the

filter function's form, based on some a priori knowledge of

the source. However, any filtered source field reconstruc-

tions presented or compared in this work have been computed

with equation (4.5) and the filter parameters kc=O.6(Nn/L)

and a =0.2.

B. Reconstruction and inverse transformation test results

The suitability of the reciprocals of all six Green's

function forms as representatives of G-l(kxfkyrz) in

equation (4.4) was tested. The results are shown in the

charts of figures 4.1a and 4.1b for the case of determining

the pressure fields p())(z 0 =0.065N) and z-component of
veocityur fields Pi)-

velocity fields v 0i)(Z =0.065X) using pom(z=0.13) as theIm 0 • [

input field. The integrated k-space form g, 6 (z) is not

included in these charts as the errors produced using this

form are so large that scaling the figures to accommodate

them obscures any information about the other forms. The

.. . . . .. . . -
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Fig. 4.1 The normalized error encountered with each method
in the source field reconstruction of (a) the pressurefield 0.065 / from the source from an input sample array of
the theoretical pressure field 0.13 ) from the source and
(b) the z-component of the particle velocity field 0.065 )A
from the source from the pressure field 0.13 A from the
source.
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sampled k-space Green's function g(5 )(z) is the best
O , N

considered.

As discussed in section A., some form of filtering must

be included in the reconstruction process using DFT's. This

need for filtering, the form of the filter function, and its

effect on a numerical reconstruction are illustrated in

figure 4.2. The error from the high spatial frequency

approximation associated with the DFT and its amplification

by the reconstruction process is apparent If the DFT of an

unfiltered solution, PIMz) is plotted with the DFT of

0P (z). In figure 4.2a the crosses indicate the amplitude

IM"

of an unfiltered DFT of the pressure field p~m (zo=0.065N)

as processed from the input pressure field pom(z=0.l3X).

The solid line plots the DFT of pom(zo=0.065N). The

difference between the two plots clearly grows for larger

magnitudes of spatial frequency. In real-space, this high

frequency error shows up as large oscillations of the

numerical solution about the actual solution. This behavior

is evident in in figure 4.2b which compares the unfiltered

(5(O005)with pmz=.6X The numerical solution

is vastly improved by a multiplication with the filter

................................ *. . .

. . . . . . . .. . . . .. ,.. .
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reconstruct the pressure at the source. The solid line plots the theoretical
values. (b) The unfiltered field against theory, (c) the filter function for
three values of a, (d) the filtered output using the a 0.2 filter.
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function, equation (4.5). This function is plotted in

figure 4.2c for kc 0.6 Nn/L and for three different values

of a. Values of kc= 0.6 Nr/L and a = 0.2 have been found

empirically to give good results. These values are used in

all filtered reconstructions in this study including those

which provide data for figures 4.1a and 4.1b. Figure 4.2d

shows the excellent fit of the filtered and actual

solutions.

As further illustration of the capabilities of the

sampled k-space Green's function with filtering, figure 4.3a

shows a comparison plot of the real part of v(5)(z =0.065N),

where the input field is p3m(z=0.13A), with vom(zo=0.065N)

plotted as the solid line; figure 4.3b shows the real part

of v( 5 ) (z =0), where the input field is pom(z=0), againstIm o

v m(z0 =O). Both figures show good agreement between the

numerical and actual solutions. These plots along with

figures 4.1 and 4.2 indicate that accurate solutions to

reconstruction and inverse transformation problems are

attainable using the sampled k-space Green's function,

9(5)(z) and the filter function of equation (4.5).re

For reconstructions, the discussion of section A. and

the test results presented in this section indicate that the

reciprocal of the sampled k-space Green's function g(5 )(z)
O',N

' t '. .- - - i . r _- , i • _ S -1 ' . . ....... .= . := = ' ? ' % : l
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Fig. 4.3 (a) Real part of the reconstructed z-component of
the particle velocity field at 0.06 X from the source
starting from the pressure 0.13 X from the source. (b) Real
part of the z-component of the particle velocity as
reconstructed in the source plane from the input source

plane pressure. The reciprocal of g.5 )(z) with filtering

was used in both, and in both, the solid line is theory.
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with a spatial frequency filter is the best inverse

propagator. The new sampling forms are of little use with

this numerical source field reconstruction method.

C. Iterative deconvolution

For practical purposes, it is not likely that a direct

inversion of equation (4.1) would ever be useful due to the

typical size of the matrix involved, 4096x4096 in this work,

and due to its nearly singular nature. The nearly singular

nature of this matrix follows from the evanescent decay of

high spatial frequency input fields Y.,N and the exponential

enhancement of input fields YN with spatial frequencies near

the propagating wavenumber; the matrix must display this

decay and enhancement if it is to model wavefront

propagation accurately. However, the fact that the matrix

multiplication of equation (4.1) can be carried out quickly

with the FFT suggests the search for an iterative

deconvolution method requiring matrix multiplications and no

matrix inversions.

C.I. Conjugate gradient descent method

The conjugate gradient descent method is an iterative

method which may prove very useful for source field
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reconstructions. The advantages of this method are its

objective nature, no filter parameters, and its relative

stability in comparison with the filtered solutions

presented above. Luenberger 3 7 describes this method in

terms of minimizing the functional

f( ) = (A IQA) - 2(t 1) (4.6),.-

where Q is a positive definite operator, and an inner

product is represented by (l~y). The solution vector A

Q-1t uniquely minimizes this functional. Before describing

the iterative solution of this problem, the correspondence

is indicated between A, Q, and 8 and the acoustic items

1D,.' the Green's function matrix [G oN(z )] of equation

(4.1), and the hologram field Y(z

The solution vector x0 is identified directly as the

collection of values Yo, (1,m) representing the sought-

after boundary condition. The positve definite operator Q

can be identified as the Green's function matrix premulti-

plied by its conjugate transpose. The vector t can then be

identified as the result of premultiplying the collection of

values y(p,q,z ) by the conjugate transpose (indicated by

the superscript dagger,t) of the Green's function matrix.

The positive definite quality of this choice for the

operator Q follows from the observations that the inner
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product (IQA)=x Q is then the norm of a sample of values

representing a radiating wavefront and is therefore

positive, and the only bounded field which can be zero

over a plane above the boundary is zero everywhere including

the boundary. With the equation (4.30)'s components thus

identified, it is clear that performing a source field

reconstruction is equivalent to minimizing equation (4.6).

The basic idea of the conjugate gradient descent method

is to move from each successive approximation, given by An ,

of x0 in a direction which lies near to the negative
0c

gradient of equation (4.6), but which is also perpendicular

to all previous changes. In terms of these successive

approxima- tions xn and mutually perpendicluar directions of

change n' equation (4.6) can be written as

4 4 4f(Xn)= f(Xn+YnPn) (4.7).

The Vn'S are readily chosen to minimize the functional at

each step, and it can be shown that the direction vectors

Sncan be calculated recurrsively.3 7 An efficient algorithm

exists where xn in theory converges to x0 in a finite number

of steps, and the algorithm requires only one evaluation of

b" 38
the operator at each step. The unique aspect of the

application of this technique to source field reconstruc-
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tions, or deconvolution, is that the N2xN 2 matrix Q needed

never be formed. All matrix multiplications by Q can be
.4.

carried out exactly by the discrete convolution algorithm

(2)o
presented in chapter III with the Green's functions g(2 or

g( 4 )
0,N'

C.2. Results from the implementation of this method

Although the conjugate gradient method converges in

theory to the unique solutionx 0 , it will not do so
0p

numerically due to roundoff error. However, it is

reasonable to assume that only the highest non-radiating

spatial frequency modes are missing from the non-unique

numerical solution after a finite number of steps, and,

therefore, it is not necessary to obtain the exact unique

solution for most purposes. A practical solution is

obtained by stopping the iterative process whenever the

magnitude of the remainder JQxn-tl falls below a chosen

level.

The hidden-line plot in figure 4.4 is the smoothed

reconstruction, by the method of section IV.A., of the real

part of the normal component of velocity at the baffled

piston source, v(5)(z=O ), from the pressure field 0.13NIm '

.......... .
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away o

away, PIm(z=0.13X). Figure 4.5 shows the reconstruction

obtained after 43 iterations by the techniques of this

section starting with the same input field pom(z=O.13)."

The standard deviation of the smoothed reconstruction from

the actual boundary field is more than five times that of

the iterative solution, and the average difference is nine

times that of the iterative solution.

Figure 4.6 shows the solution after 192 iterations.

The standard deviation of this solution from the actual

field has increased by 15% over that obtained after 43 -

iterations inspite of the fact that the magnitude of the

remainder lQXn-tl has decreased by a factor of 10 from

0.001ftl to 0.0001[ti. The important point here is that

the first 40 iterations reduced the remainder by a factor

of 1000, while nearly five times as many iterations yielded

only a tenfold reduction and did not improve the solution.

This suggests that the iteration process may be objectively

stopped when it is observed that the magnitude of the

remainder is no longer decreasing rapdily.

The major disadvantage to this technique is the amount

of time required; nearly ten times as much total job time is

required to compute a solution by 40 iterations as is

required for a smoothed solution. The independence from

n.'..;<-:'"27 " ." '" ",",- /, .. ', ." '," "', - - "- " "'-" " "- ', ,' . ." , . ., , ", "- "
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Fig.4.4 hiden-ineplotof te soothd rconsruc

tig. 4.4a Aohidden-lineplocty of the smoothed recostruc

source, Im (z,-0), from the pressure field 0.13X away.
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p.-

Fig. 4.6 The reconstruction obtained of the real part of
the normal velocity component at the baffled piston source,

VIM(ZOO),from the pressure field 0.13X~ away after 192
Iterations by the techniques of section IV.C.

. - - .. .- - - - - -
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adjustable filter factors and the possibility of increased

accuracy may warrant such an increase in computation time.

Further, the actual computation time may be reduced by

performing the calculations on an array processor and by

improving the algorithm itself. The execution time of the

iterative solution is likely to improve much more than the

smoothed solution with the use of an array oriented machine

since those sections which are least ammenable to array

manipulation, intialization and input/output, are virtually

identical in both cases and constitue the bulk of the

latter. The basic algorithm3 8 can be generalized so that

each step requires only one matrix multiplication by [G D,

and not the two matrix multiplications, [Gt ] and [G 1
D,N D0, N

represented by Q; this would cut the iteration time in half.

The conjugate gradient descent method using the FFT to carry

out discrete convolutions with the Green's functions g(
2 )

0 , N

and g(4 ), as described in chapter III, deserves further

study in actual Nearfield Acoustic Holography experiments.

C.
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Chapter V.

bp

SOLUTION OF THE SURFACE PROBLEM FOR ODD-SHAPED RADIATORS

In many practical acoustic problems with odd-shaped

radiating surfaces, the normal derivative of the field in

the form of the normal component of the surface velocity is

specified, and the pressure field over the surface is

sought. Forming a numerical solution to this problem is

also the first step in the reconstruction process covered in

chapter VI. Sections A and B of this chapter develop a

numerical solution for this problem and present the theory

behind this method. In section C, the non-trivial but

theoreticaly tractable spherical source boundary is

presented as a suitable test case for the techniques of this

chapter and the next.

A. Relatinq the surface velocity and pressure

For a radiating surface which does not correspond to a

level surface in a separable coordinate system of the

Helmholtz equation, there is no simple integral which yields

the field T in terms of either the Dirichlet boundary

condition Ls or the Neumann boundary condition -i._ alone

specified over the surface . With the requirement that the

field satisfy radiation conditions, the specification of
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either Dirichlet or Neumann boundary conditions is
39

sufficient to determine Y uniquely for any closed surface 3 9 -

The Surface Helmholtz Integral Equation and the Interior

Helmholtz Integral Equation relate the two boundary

conditions accordingly. The use of these equations in

continuous form and in discrete approximation are discussed

in this section while their actual reduction to discrete

form is discussed in the next section. The last section of

this chapter will present test results for this method. "

A.1. The Surface Helmholtz Intearal Equation

In chapter II, the Surface Helmholtz Integral, equation

(2.19), was derived as a limiting case of the Helmholtz

Integral for the general field Y. Written in terms of the

acoustic pressure field p(rs) and the surface normal

component of particle velocity vn(rs) , this equation is

(rS)=-p(s) G )dS -ipck Vn s) Gf(rs-rs)dS
s. n

(5.1).

The integrations in this equation must be replaced by

appropriate numerical integration approximations to solve

the general problem of odd-shaped radiators. At some point

in their application, most numerical integration schemes

.,..- .-.... . ...._ _ , ., .-. .-. ¢ -.....-. . . . -.. : .: ...i- i, -_ C: ' . - " . -- .. , : I
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reduce to matrix operations on a set of coefficients

representing the known and unknown fields Vn(rs) and P(r).

Denoting these coefficient sets as vn(Is)i and p(*)i, the

matrix approximation to equation (5.1) is

prs)q =DSqj p(rs) MSqj vn(rs)j (5.2),

with the Einstein summation convention in force. Equation

(5.2) can be written as

U-qj P(rs)j = MSqj vn(4) j  (5.3)

where M M - 1,qj and the matrices [D] and [M] are

appropriate to the chosen numerical integration scheme.

At certain characteristic frequencies, equation (5.1)

is not sufficient to determine a unique solution to the

radiation problem. 3 0'39 '4 0 The problem is that, at these

frequencies, interior eigenmodes exist which are homogenous

solutions over the surface under study . To any particular

solution of the problem, it is then possible to add one or

more homogeneous solution. This problem manifests itself as

nearly singular matrices [D] and EMS] in the approximation

of equation (5.3).

p.%

... . . . . . . . ....... .... .. . .- .. .
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A.2. The Interior Helmholtz Integral Equation

The homogeneous solutions of the Helmholtz equation are

not radiating solutions, and it is necessary to incorporate

the Interior Helmholtz Integral Equation, equation (2.18),

30with the surface equation to eliminate these solutions

Written in terms of the acoustic pressure field p(r and

the surface normal component of particle velocity vn(rs),

the Interior Helmholtz Integral Equation is

r ic v~ ) Gf( r 1-%)dS (54

0 rfsP( ) fGf( rIi-rs jnS (5.4)

where the point I is interior to the surface. Equation

(5.4) can be approximated by

DIqj p(rs)j = MIqj Vn(r)j (5.5)

where the subscript q's refer to a number of points rI in

the interior. Equations (5.3) and (5,5) can be treated as an

overdetermined system of equations and solved accordingly.

In the literature,30,40 a largely unanswered question is how

to choose the interior points, as points which have nearly

zero field with an interior eigenmode boundary solution must

be avoided. The next section details the reduction of

equation (5.1) to equation (5.2) and also introduces a

-- .'.-. .. -' ./-...-...--'.-.-..-..'.-....-..-...-............-.....-...-.....'."--..,-...'......-.".....-..........
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method for detecting characteristic frequencies and for

choosing interior points to avoid the problems caused by

these solutions.

B. Reduction to finite and discrete operations

The reduction of the surface problem to the matrix form

of equations (5.3) and (5.5) and their solution is presented

in three parts in this section. The geometric represen-

tation of the surface as an assembly of flat triangular

plates along with the corresponding scheme for performing

the numerical integrations is presented first. The

detection of characteristic frequencies for odd-shaped

radiators is covered next. The formation of a surface

solution matrix is considered last.

B.1. Finite elements

The continuous surface of an odd-shaped radiator must

be represented by a generally simpler geometric surface

which can be specified by a finite number of parameters.

The method of representing the surface presented here is

essentially the method most recently described by Koopmann

and Benner. 4 0 The actual surface is replaced by a number

of interconnected flat triangular plates whose vertices lie

... '..-.- . . . . . .
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on the actual surface. The acoustic pressure and normal

component of particle velocity are considered constant over -.

each triangular element and equal to their respective values

at the center of each element. Since the elements are

flat, their normal directions are easily determined by

transforming the global set of coordinates in which the

problem is originally specified into new sets of coordinates

for each element. These local sets of coordinates are

defined by the three element vertices in such a way that the

local z-axis points in the local normal direction.

By approximating the surface and surface field with

these triangular elements, equation (5.1) can be

approximated as

P~q)= Pr ( ) Gf(rq-r )dx'dy-J~q -a Z-

- ipck Z vn() ) Gf(q-r')dx'dy' (5.6)
iJlj ~ J

where x, y, and z are the local coordinates for each

-4
trianglular element J and the vectors r q locate the center

of each triangle globally. The integrands are simply half

the Green's functions GD and GN encountered in chapters II,

III, and IV. The first i.ntegral for j=q yields zero

because the element is flat and the entire integral of

. . . . ..
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equation (5.1) omits a small region around the point rq;

thus, integration of GD over element q is omitted in

equation (5.6).

By multiplying equation (5.6) by two, substituting GD

and GN for the integrands, noting that integrating GD over

the entire element q yields one, and finally rearranging the

integrals with respect to the equals sign, equation (5.6)

can be written as

P(,r)f GD(4q-4 ')dx'dy'

ipck Z vn(rj) GN(rq-r )dx'dy .
3f J j

The integrals are the same type as in equation (3.5)

differing only in that the integration areas here are

triangles as opposed to squares. The integrations may be

approximated by expanding the Green's functions as is done

in chapter III. The details of this expansion and the

resulting quadrature formulae are presented in Appendix B.

The matrix coefficients of equation (5.2) can then be

identified as

.. .. -. . . .. . . . . .

. . . . . . . . . . . . . .. ".
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-q= GD(Xq-X'yq-y' Zq-Z')dx'dy' (5.8)

an M c G X1yY'z ')dx'dy' 59
and MSqj pck GN(xq-X' yq-y Zq-Z .X. ...

SAj

B.2. Characteristic frequencies

There is an inherent ambiguity when using the Surface

Helmholtz Integral Equation as to wether an interior or

exterior field is under consideration. For the interior

region, all of the boundaries are located at finite

distances; hence, the restriction to radiative solutions is

physically unnecessary. At characteristic frequencies,

radiating and non-radiating solutions exist. The Surface

Helmholtz Integral Equation is still valid at these

frequencies; however, since this equation must allow for

more than one solution, its numerical approximation with a

linear system of equations will be unstable under inversion.

An invertible system of equations is obtained by restricting

the solution to the single radiating solution by evaluating

the Interior Helmholtz Integral Equation at a number of

points in the interior. The difficulties that remain for an

odd-shaped surface are determining its characteristic

frequencies and choosing an appropriate set of interior

-1. .5
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points if solutions at these frequencies are needed. In this

section, a method for detecting these frequencies is

presented and a suggestion on choosing the interior points

is developed.

It is assumed that the surface equations can be

adequately represented by a set of linear equations, as in

equation (5.3), throughout the frequency region of interest.

Therefore, if the continuous equation admits non-radiating

homogeneous solutions, its numerical representation as a

linear system of equations should admit these solutions as

well. Exactly how these non-radiating interior solutions

find their way into an exterior approximation formulation is

intuiatively clear if the interior problem for the same

surface is considered.

The monopole matrix [MS] of equation (5.3) for the

interior problem differs from that for the exterior problem

only by a minus sign for each element, while the dipole

matrices (D] are identical. At characteristic frequencies,

velocity eigenmodes exists for the interior which yield zero

surface pressure by definition. The left-hand side of

equation (5.3) is zero for such a mode and so reduces to

1S v0  '-ME 0 00MSqj vn ( s )= -MSqj vn(rs)= , Vn(rs) 0 (5.10),

where the superscripts I and E indicate the matrices of the

interior and exterior problems and where the superscript 0

identifies the vector as representative of an eigenmode. If
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equation (5.10) has a solution, then the equation
D pO4 E pO pO

09s , p (rs)d 0 (5.11)

.04

must have a solution p (r), which is the radiating solution

04corresponding to -vn(rs). Equations (5.10) and (5.11) can

only be satisfied if the matrices [MS] and [DS] are

singular4 1; that is,thelr determinants are zero. The

problem of determining the characteristic frequencies of an

odd-shaped surface is therefore equivalent to measuring the

relative singularity of the matrices as a function of

frequency.

According to Stewart,4 1 the difficulty in determining

numerical singularities is that the matrices involved are

only approximations to the actual problem under study and so

may only be close to singular matrices when the real problem

is singular. Furthermore, many methods for decomposing a

matrix may transform a nearly singular matrix to a form

which is not nearly singular. However, the Singular Value

Decomposition yields a nearly singular matrix if and only if

the original matrix is nearly singular.41 Therefore, this

decomposition is ideally suited for determining the

characteristic frequencies of an odd-shaped surface and the

eigenmodes as well. To show how this is possible, the

Singular Value Decompostion is examined. •

• - :9......................................................
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By premultiplying and postmultiplying a general matrix

by a set of unitary transformations, the Singular Value

Decomposition reduces the matrix to diagonal form. By

gathering these transfromations into the matrices [U] and

[Vi] (the dagger indicates the conjugate transpose), the

general mxn matrix [X], where m>n, can be written as

[XI = [U][] [Vt] (5.12),

where [U][Ut]=[I], [V][Vt]=[I], and [E] is an nxn diagonal

matrix with diagonal elements Sk' the so-called singular

values. It can be readily shown that the singular values

measure the relative output vector magnitude for each of a

complete set of input vectors, namely the columns of [V].

For a hermitian matrix, the singular values are the

eigenvalues, and the columns of [V] are the eigenvectors.)

In decomposing either [MS] or [M], this set covers all

possible surface velocity or pressure distribution

approximations. It is the low frequency, long wavelength

regime which is of main interest in this work, and it is

assumed that, if interior eigenmodes exist, they must be few

in number relative to the number of degrees of freedom of

the approximation scheme. Since all of the columns of [V]

are orthogonal, eigenmodes, if they exist, must be

represented by a distinct set of columns in [V] possessing

correspondingly small singular values in comparison with the

./<. . . . .. ....-. ....... . ... . . .
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singular values of the majority of other modes. Therefore,

the presence of a very small singular value, relative to the

remainder of values for a given matrix, indicates the

existence of an interior eigenmode, at least in a numerical

sense.

The lower characteristic frequencies of an odd-shaped

surface enclosed volume can be found by forming and

decomposing the matrices [MS] and [n ] over a range of

frequencies. In a plot of the calculated minimum singular

value ratio as a function of frequency, these frequencies

should be characterized by a pronounced dip in the plot.

An example of this is presented in the last section of this

chapter. Notice that only the singular values need be

calculated for this process, and this can be done in much

less time then is required for the complete decomposition

as in the form of equation (5.12).

When a solution is required at an identified character-

istic frequency, the formation of the matrix [V] of equation

(5.12) is useful. Since a column q of CV] which is

associated with a relatively small singular value Sq is an

eigenmode approximating vector, the suitability of a set of

interior points, to be used in forming equation (5.5), can

then be expected if the following conditions are met:

DImn p sn >> 0 and MImn vo >> 0 (5.13),
nq sn
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where p and vo are all the qth columns of the [V] matrices
q .

obtained in decomposing respectively [M] and [MS] such that

6q is very small. Equation (5.13) insures that the set of

qr

chosen interior points, along with the Interior Helmholtz

Integral Equation, yield a system of equations which are not

satisfied by the non-radiating boundary conditions.

B.3. Formation of the surface solution matrix

The goal of this chapter is to form an invertible

matrix which relates the surface pressure and normal

component of surface velocity as follows:

p( s)q = GSqj Vn(%s)j (5.14).

At non-characteristic frequencies, the matrices of equation

(5.3) should be non-singular, and the matrix [GS] may be

formed directly as

GSqj = MS (5.15).

At characteristic frequencies, the matrix must be

generated from the overdetermined system of equation (5.3)

and equation (5.5). The overdetermined system may be

written in the form of a single matrix equation as V

[- [ P(D) ] = MI ] vn(rs) 3 (5.16).
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An equation with a single nxn matrix, where n is the number

of degrees of freedom of the surface model, as in equation

(5.14) may be obtained from equation (5.16) by utilizing the

Singular Value Decomposition to form a generalized inverse

of the left-hand side matrix in equation (5.16).4 The

decomposition has the following form: "

= U. U1 2 V (5.17).U21 U22 0[

The generalized inverse of this matrix is given by:

LDI J V 0 Ut 2LI_ = v ] [ z-  0 ] ut  Ut

12 22

This equation reduces to the following form:

Dj V [ [U11 U 2

A similar decomposition and reduction can be performed on

the right-hand side matrix in equation (5.16) yielding the

following equation

Ms = [ ] [ Z " 1"  (5.20)MIW

where [ r ] is a diagonal matrix and [ W11 W12 ] and Z ]
21 22
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are unitary matrices. The matrix [ GS ] is then given by the

expression

GS ] = C V ][ Z-I][ U U ] ]C r r Zt ] (5.21).1 1 21 
' 

21

C. Testing the techninque

To test the suitability of the techniques described in

this chapter, and those to be described in the next chapter,

a closed boundary for which non-trivial but theoretically

tractable fields exists is desirable. As in so many

problems in physics, the sphere is an ideal test case.

Although the spherical coordinate system is one of the

separable coordinate systems of the Helmholtz Equation,

no advantage is taken of this symmetry in the techniques of N
this chapter or the next; thus, in this sense, the surface

of a sphere may be taken as an odd-shaped surface. In this

section the approximation of the surface is presented, and

the characteristic frequencies predicted with this

approximation by the technique of section V.B.2. are

compared with those of a true spherical surface.

-. - .- - . . ...- .~~. &*** *.*
. . . . . . . . . . . . . .. . . . . . . . . .
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C.1. Approximatinq the spherical surface

The surface of the sphere is approximated in this work

by a 60-faced polyhedron. Each of the faces are triangular,

and the entire set is described by 32 vertex or nodal points

which lie on a circumscribed sphere. These 32 nodal points

are the 20 vertices of a dodecahedron plus 12 additional

points obtained by radially projecting the center of each

face of the dodecahedron onto the circumscribing sphere.

Field values are calculated at the center point of each

triangular face. These sixty points all lie on an inscribed

sphere whose radius is 0.923 times that of the

circumscribing sphere. This discrepancy must be accounted

for in any comparison with theory for the sphere. The author

was spared the task of calculating the cartesian coordinates

of these nodal points and of determining which points

describe each triangle through the efforts of an industrious

undergraduate, Ray Sova, who researched this particular

problem. 45 The polyhedron is pictured in figure 5.1. The

edges of each adjacent triangle are separated for graphical

purposes only.

. . . ..-". -. , .' ... I ". "". - %.- - "... ° . - . - - ., . -.. . ...-. .
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C.2. A comparison of theoretical and experimental values

for the characteristic frequencies of a sphere

The monopole and dipole surface matrices of equation

(5.3) where calculated for the polyhedral representation of

the sphere over a range of wavenumbers from near zero up to

twelve. In all cases the radius of the circumscribing sphere

was fixed at unity. The minimum singular value ratio of the

monopole matrix as a function of wavenumber is plotted in

figure 5.2.

The spherical Bessel functions are the solution to the

radial part of the Helmholtz Equation in spherical

coordinates for the interior problem.4 6  Therefore,

eigenmodes or resonances occur whenever the frequency

normalized radius, ka, equals a zero 4 7 of a spherical bessel

function. The theoretical resonances or characteristic

frequencies for a sphere with radius equal to that of the

inscribed sphere of the polyhedron are indicated by the plot

border's outer tick marks.

The same type of plot is presented in figure (5.3) for

the minimum singular value ratio of the dipole matrix of

equation (5.3). Both plots show excellent agreement between

theory and calculation. As the frequency or wavenumber

increases, this agreement should break down as more complex

....................................-.
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eigenmodes are possible. A conservative estimate of the

useful range of the 60-sided polyhedron for representing the

sphere is obtained by equating the shortest distance between

two triangular element's centers with one half the minimum

valid wavelength. This cutoff falls around a wavenumber of

five.

To produce the data for the plots of figures (5.4) and

(5.5), a number of interior points iere used to eliminate

the interior eigenmodes as possible solutions to the

numerical formulation of -he exterior problem. The singular

values are those of the overdetermined system of equation

(5.18). This correction was performed over the range between

the dashed lines. The elimination of the numerical

singularity is clear in these plots.

. . . . . . . . . . . . . . . . .
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Chapter VI.

RECONSTRUCTION OF ODD-SHAPED SOURCES

The extension of the techniques of Nearfield Acoustic

Holography to include the reconstruction of odd-shaped

sources is highly desireable for both theoretical and

practical applications. It is the aim of this chapter to

propose a numerical method for accomplishing this extension

and to present the results of simulatlon experiments which

support this proposal.

Generalized Holography in any separable coordinate

system of the Helmholtz Equation is based on the analytic

transformation of fields to and from an appropriate eigen-

space wherein wave propagation is performed by a simple

multiplication operator. 9 As is shown earlier, in the case

of planar holography, source field reconstruction is

accomplished by Fourier transforming the measured field and

then dividing the transformed field by the appropriate

Green's function of equation (2.25 or 2.26). In chapter IV

it was shown how this type of transformation approach is

highly desireable in reconstruction problems as experimental

or computational noise tends to be transformed to the high

order modes of the eigenspace and not to the lower modes.

.4
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Being an inversion process, source field reconstruction

amplifies any data noise. By relagating the noise to higher

order modes with an appropriate eigenspace transformation, a

reconstruction of the lower order modes is possible.

An analytic transformation is not possible in the more

general case of odd-shaped source boundaries. However, it is

possible to generate and perform the appropriate trans-

formations numerically. The Singular Value Decomposition

plays a central role in this general reconstruction process

much as the Fast Fourier Transform does in the case of

planar holography. Since the Singular Value Decompostion

operates on a matrix, its application requires the explicit

development of the linear relationship between the normal

component of surface velocity and the radiated field

pressure and a reduction of this relationship to a finite

matrix form.

A. Relating the surface velocity to the field pressure

For an odd-shaped radiator, reconstruction is defined

as the determination of the normal component of the surface

velocity at the source from a measurement of the radiated

pressure field at a number of points above its surface.

Experimentally, these measurements may be obtained with a

planar array of microphones, or they may be obtained with a
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more flexible microphone system at a number of points

surrounding the surface. A general method for forming a

matrix relating the surface velocity to the radiated

pressure measured at these microphones is a fundamental

requirement of the reconstruction process. To lay the

groundwork for such a method, the continuous integral

relationships between the normal component of surface

velocity and the radiated pressure in the field are examined

in this section.

A.1 The Helmholz Integral

The Helmholz Integril, equation (2.17), can be written

in terms of the acoustic pressure field and the particle

velocity field as:

r Pr) f(rf-rs)dS - ipck Vn(s) Gf(f-s)dSfS "s "f
(6.1).

This expression relates the acoustic pressure at a point If

in the field above the surface S to the surface pressure and

the sought-after normal component of surface velocity. The

Surface Helmholz Integral Equation (5.1) and the Interior

Helmholtz Integral Equation (5.4) provide the link between

the surface pressure and velocity as discussed in the

previous chapter. Together, equations (5.1), (5.4), and

.. • .. . . O~- 4A .. . . . - - . • • .. - ° . . .. .. . . . .-. ... • %" ... . _... . ..-... . %
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(6.1) uniquely determine the pressure in the field in terms

of the normal component of surface velocity.

A.2 Experimental uniqueness problems

In the last chapter, a fundemental uniqueness problem

was encountered with the use of the Surface Helmholtz

Integral Equation due to the presence of homogeneous

solutions of an interior problem closely related to the

exterior radiation problem under study. It is assumed that

the techniques of the last chapter are sufficient to

overcome this problem. With the use of equation (6.1) in

this chapter however, a different source of non-uniqueness

is encountered; this non-uniqueness can be viewed as more

experimental in nature than the unavoidable problem with

charateristic frequencies encountered in the last chapter.

Given the normal component of surface velocity for the

odd-shaped source and the Surface and Interior Helmholtz

Integral Equations, a unique surface pressure field is

determined. These two surface fields in turn define a

unique pressure field above the surface by way of equation

(6.1). However, this radiated pressure field can only be

observed experimentally over a limited region and with

finite resolution. In analogy with the theory of planar

holography, it is intuitive that spatial frequency modes of

a .a"-i
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an odd-shaped surface must generate evanescent fields when

their wavenumber exceeds that of the propagating wavenumber.

The information about these modes is diminished at the field

measurement loci relative to the information from lower

frequency radiating modes. If the evanescent field of one

mode falls below the dynamic range of the measuring system

relative to a second mode, surface modes with or without-

this evanescent mode will appear experimentally identical.

Numerically this problem manifests itself as a singular

system of linear equations. A reconstruction solution to

this problem is possible, but it requires special treatment

of all information about these modes.

B. Finite and discrete operations

The numerical reconstruction problem can be broken down

into two parts. First, a single matrix is formed relating

the finite set of numbers vn(rs)j, which represent the

normal component of surface velocity, to a measured set of

field pressure values p(-rf)q And second, a minimal solution

to this matrix problem is determined. These two problems are

considered in this section.
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B.1 Formation of the field matrix

In order to reduce the size of the numerical

odd-shaped surface reconstruction problem, it is desireable

to form a single matrix which directly relates the normal

component of surface velocity to the pressure at a number

of points in the field above the surface. This matrix is

refered to as the field matrix (GF], and with it the

following equation can be written:

P(rf)q GFqj Vn rs (6.2).

As already discussed above, there is no single integral

relating the surface velocity and field pressure, although

the pressure is uniquely determined by the system of

equations (5.1), (5.4), and (6.1). The reduction of equation

(5.1) and (5.4) to finite form was covered in the last

chapter, and the same methods used there can be applied to

the reduction of equation (6.1) to a finite and discrete

form. By treating the odd-shaped surface as constructed of

a number of edge-connected flat triangular elements, each

with constant surface pressure and velocity, as in chapter

V, equation (6.1) can be approximated by the following

equation:

P(rf)q = DF + Vn(rs)j (6.3),

qj P( s)j MFqj n4

where the matrix coefficients can be identified as
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DFqj = A GD(XqX,,yq y,,ZqZ,)dxdy, (6.4)

and MFqj= .2~.S- f (6.5).

These integrals differ by the simple constant factors of

plus and minus one-half from the integrals of equations

(5.8) and (5.9) respectively. Their numerical evaluation is

presented in appendix B.

By using the surface solution matrix [GS] of equation

(5.21), the surface pressure vector p(rs)j can be written in

terms of the surface velocity. With this replacement,

equation (6.3) can be written as
p( f)q = (DFqn GSnj + MFqj) vn(rs)j (6.6),

and the elements of [GF] can be identified as

GFqj = (DFqn GSnj + MFq) (6.7)..

Equation (6.7) provides the formula for constructing the

elements of [GF] from a set of readily calculated

coefficients for any odd-shaped geometry.

B.2 Solution with the Singular Value Decomposition

The generalized inverse of a matrix is defined in

equation (5.18) of chapter V in terms of the matrix's

A-[+
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Singular Value Decomposition. The generalized concept of an

inverse is needed in chapter V inorder to obtain a single

nxn matrix relating the surface velocity and surface

pressure from the mxn, m>n, overdetermined system of

equations (5.3) and (5.5), where n is the number of degrees

of freedom for the surface model, and m-n is the number of

interior points. In this chapter, the Singular Value

Decomposition is used in a similar way, but it is not

necessary to actually form the generalized inverse of the

field matrix [GF] as is necessary for CGS] in chapter V. It

is interesting and instructive to clarify these ideas by

comparing the numerical process of wavefront propagation and

source field reconstruction for an odd-shaped source with

the analytic process for a source with a level surface in a

separable coordinate system.

For the odd-shaped source problem, the surface

is represented by a model with n degrees of freedom and

the field above the surface is sampled at m points where m

is generally larger than n. The mxn matrix [GF] then has

a decomposition with the same form as equation (5.17), that

is

[GF]= U1 1 U ][ Z 1 V t  (6.8).U2 Ua 0 i
21 22

The matrix [GF] is the operator which produces the pressure

at a number of field points when it acts on a sample of the

• .=
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odd-shaped surface's normal component of velocity. For

comparison, the corresponding operator Q for the case of an

infinite, continuous planar source can be written as

Y-1 G N - 7 (6.9)

where 9 is the 2-D Fourier transform and G is the Fourier
N

transformed Green's function for planar Neumann boundary

conditions as discussed previously. The analogy between

the continuous and numerical processes can be seen readily:

The matrix [Vt] corresponds to the Fourier transform, the

diagonal matrix [Z] takes the place of the multiplication by

the Green's function, and the matrix [U] corresponds to the

Inverse Fourier transform. Notice that since there are only

n degrees of freedom in the odd-shaped surface model, there

can only be n unique ouput fields from equation (6.8), and

these fields are spanned by the first n columns of the

unitary matrix [U]. A similar situation could arise in the

continuous case if the boundary condition was known only up

to a certain cutoff spatial frequency. The propagated field

would then be limited to the same spatial frequency range.

The reconstruction of a source plane field in the

continuous case requires the application of the inverse of

the operator (I. This operation consists of performing the

Fourier transform of the pressure in a plane above the

source, dividing the transformed field by the Green's
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function, and performing the inverse Fourier transfrom on

the resulting field. If information about the source is

needed only up to a finite spatial frequency, then the

components of higher spatial frequencies produced by the

forward transform are ignored. Numerical reconstruction of

an odd-shaped source as given by the generalized inverse

of the matrix [GF] follows the same pattern. The pressure

field sample vector is decomposed into a superposition of

the columns of the unitary matrix [U] by multiplication with

the conjugate transpose of [U]. The first n components are

divided by the corresponding singular values of [Z] while

the remaining m-n components are discarded, and the

resulting superposition of the columns of [V] is calculated.

B.3 Calculating the solution in the presence of noise

The preceding discusion considers reconstruction when

all quantities are known exactly in contrast with the noisy

data present in experiment. This noise results from the

limitations on experimental measurement and from the

discrete approximation of continuous operations used to

process the deta. Planar source fields are reconstructed

using the DFT of a finite sample of the field above the

source as explained in chapter IV. In this case it was shown

that the as the spatial frequency approximated by the DFT

. . . . - ' . - " . " " . , . - - ' - - , . - " ' - . . - - - - - - ' " ' -'A-i
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grows higher, the noise level grows higher, and the

reciprocal of the Green's function needed in the

reconstruction process also grows. Both these factors

enhance the noise in the reconstruction. The same type of

problem can be expected in any reconstruction problem, and

methods for avoiding the problems with noise and an

understanding of the effects of any reduction method on the

solution are necessities.

The general approach to producing a reasonable solution

in the presence of noise is to eliminate or reduce the

contribution to the solution from the calculated components

of higher spatial frequency modes. The relative magnitude of

the Green's function or singular values provides a guide in

the noise reduction process. The use of a filter function

was discussed in chapter VI for planar reconstructions and a

similar approach is suggested in the Geophysics literature

for inversion problems using the Singular Value Decomposi-

tion, but no clear guidelines are provided.48  A simple

cutoff of any components associated with a singular value

below a chosen minimum value is another approach, and a

scheme for determining where to set the cutoff based on the

relative size of the singular values and the calculated

component size is presented in the Numerical Mathematics

literature. 4 9 The users guide 4 3 to the Singular Value

Decomposition program used in this work maintains that, just

-1
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how to handle these small singular values, is still a

problem open to investigation, and future research in this

area would be valuable to a number of disciplines. Due to

the relatively small size of the problem studied here (i.e.

sixty degrees of freedom) a much simpler approach is

practical.

The approach used to generate the reconstructions in

this work is to watch the reconstructions develop as higher

and higher order reconstructed surfaces modes are super-

imposed. The process is halted and reversed one step when

the solution takes on a noisy appearance. Research into

reducing the subjectivity of this step would be desireable.

However, notice that the same cutoff (or no cutoff at all)

is used in the reconstructions presented in the final

section of this chapter. This suggests some level of

consistency from experiment to experiment. Furthermore,

notice that the lower order modes are not effected by this

method, and these are the modes which radiate most

efficiently. In many applications, these lower order modes

will be of primary interest, and the neglect of tenuous

information about the highest order modes will be

inconsequential.

.9

. . . . . . . . . . . . .
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C. Calculating the theoretical field of a test-case

The techniques of this chapter were tested in a number

of simulated odd-shaped source reconstructions. A spherical

source boundary is represented in these simulations by the

sixty-sided polyhedron described in the last chapter. A

simulation experiment consists of generating the theoretical

pressure at a number of points above the odd-shaped surface,

thus forming a theoretical hologram, and then reconstructing

the surface field from this hologram using the techniques

described above. In this section an appropriate boundary

condition and a method of calculating the field produced by

this boundary are presented.

C.1. A small piston set in a rigid sphere

A small piston set in an otherwise rigid sphere was

chosen as the test case boundary condition, because it

provides a good test of the resolving capabilities of the

reconstruction technique, and the field produced by such a

boundary is relatively easily calculated. The actual

boundary condition used for a sphere with radius a expressed

in spherical coordinates is

u when 0 < <
n 0 otherwise (6.10).

S.•'' ' .' : . . .- .-.- .
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The coordinate system is chosen to eliminate any dependence N

on the angle 0.

The angle e0 is chosen so that the active area of the I
boundary is equal to the area of one triangular element in

the surface approximation model. This area is one-sixtieth

of the total sphere's surface. Simple calculation shows that ]
angle 0 satisfies the following equation: N

cos( e0  ) 1 - 1/30 (6.11).

For this small angle, the enclosed surface deviates very

little from a flat surface, and it is thus reasonable to

refer to this boundary section as a small piston.

C.2 Calculating the field

The pressure at any point outside the rigid sphere

with a small piston is given by the infinite summation:5 0

p(4rf)= p(rf,e,o)=

00:
h (kr)

iPcuo I (Pmti[cos(0)1-Pm [cos(eO)] Pm[COS(e)] M2 m=O h (ka)

(6.12)

where the Pm'S are the Legendre polynomials, the hm s are

the spherical Hankel functions, and the prime indicates the

derivative with respect to argument. The recurrence

relations for these polynomials make them fast and easy to
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tabulate numerically. The series also converges rapidly and

is approximated in this work by the first ten terms.

D. Results from the test case

In this section the results of simulated reconstruc-

tions of the piston set in a rigid sphere are presented. The

wavenumber in these simulations is 4.85 corresponding to a

characteristic frequency of the sixty-sided polyhedron

model, and therefore, the techniques of chapter V are

required to form a surface solution matrix from the over-

determined system of equations (5.3) and (5.5). A set of

sixty interior points radially aligned with the surface

element centers but half the distance from the sphere's

center were used to generate an overdetermined system of

equations using the Interior Helmholtz Equation.

Two different hologram geometries were simulated:

measurements taken on a planar grid of 25x25 microphones

spaced symmetrically 0.4N apart in a plane 0.23N above the

sphere; and measurements taken at 60 microphones each

located 0.23N radially above the center of a surface model

element. Note that, due to the numerical integration scheme

for determining the field matrix coefficients, it is best

not to bring the field points too close to the surface

elements. A separation from any element to any microphone

-""" " ,' -" "- ' " ' " "' " ." -' -'" - ', " " " " % "" " ''" i " " " ." ", " • ". - ' ,¢ ." , " . -
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of half the smallest distance between element centers should

be adequate; the distance between surface element centers is

0.48X in the simulations presented below.

D.1 Displaying the reconstructed odd-shaped surface fields

Holographic reconstructions generate large quantities

of information which must be displayed graphically to be

useful. Planar reconstruction field quantities are readily

displayed by conventional 3-D hidden-line plots of the field

variable over the 2-D plane, whereas odd-shaped source

reconstructions present a more general graphic display

problem. Novel graphics routines were developed to handle

this problem.

The technique for diplaying the reconstructed

odd-shaped surface fields is carried out in two steps.

First, enough imaginary cuts are made in the triangle-faced

polyhedron model of the odd-shaped surface so that it can be

flattened out into a plane figure. The shape of each surface

element triangle can be preserved in this process provided

the original surface is convex. With this process, some

elements of a surface which is not strictly convex would

have to be distorted, and, to avoid this distortion, it

might be preferable to process and display sections of such

surfaces separately. A flattened projection of the sixty
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sided polyhedron used in this study is presented in figure

6.1. The element numbering scheme is the same as used in

figure 5.1 for the unprojected surface.

Once a projection of this type has been achieved, a

field variable can be displayed by constructing a five-faced

prism over each triangle where the base and top of the prism

are identical triangles and the height of each prism is

determined by the field variable. A 2-D projection of the

resulting set of prisms can then be generated.5 1  This

projection will display the field variables over all the

elements in a single figure which conveys some idea about

their spatial distribution as well. The remaining figures of

this chapter serve as examples of this projection scheme.

D.2 Reconstruction from a planar hologram surface

Reconstructing an odd-shaped source from field pressure

measurements over a planar array of microphones is of

special interest as the Nearfield Acoustic Holography Group

at the Pennsylvania State University possesses such a

measurement system. More generally, reconstructions of this

type would be experimentally advantageous because a fixed

microphone array allows for very high speed data acquisition

as compared with a scanning microphone system.
13

................................... 4
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The normal component of intensity is an ideal quantity

to display, as it incorporates the normal component of

velocity and the pressure, and it requires the proper

determination of phase between the pressure and velocity.

Note that, for comparison purposes, the normal component of

intensity of a small piston in a rigid sphere is zero

everywhere off the piston and nearly constant over the

piston.

The sixty sided polyhedron is too coarse of a model to

supply detailed quanitative information about the small

piston source, but the following figures demonstrate that it

can be used to determine the location of the source quite

well, and the intensity values produced are all within 3dB

of the theoretical value at the piston's center.

It is to be expected that reconstructions of small

features will be more difficult the further these features

are from the measuring system. To address this expectation,

a series of normal component of intensity reconstructions

is presented in which the theoretical piston is located

progressively further from the hologram plane.

Figure 6.2 is a 3-D projection of the normal

component of intensity reconstruction from the theoretical

pressure field of a single piston centered on surface

element number 1 C see figure 6.1 or 5.1 ]. The location

of the piston source is clearly indicated. A small false
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source appears at element 59 which is on the opposite side

of the sphere from the true source, however this source

falls below 7% the strength of the true source. The actual

intensity value reconstructed at element 1 is 11% below the

theoretical central value. For this reconstruction, out of

the sixty surface modes representable by the surface model,

the modes associated with the fifty largest singular values

in the decomposition of the field matrix, equation (6.8),

were used. This holds true for the next three reconstruc-

tions presented as well.

Figure 6.3 displays the reconstructed normal

component of intensity for a piston source centered on

surface element 20. A false source appears at element 53

which is adjacent to the diametrically opposite element of

element 20. This source is 11% the strength of the maximum

reconstructed source strength. The reconstructed source at

element 20 is 20% below the theoretical central value.

Figure 6.4 displays the reconstructed normal component

of intensity for a piston centered on on surface element 56

which is one of the furthest elements from the hologram

plane, and it faces away from the array. There are several

small false sources in the 10% strength range, and the

reconstruction of the true source is 46% the central theo-

retical value. However, the existence of a small localized

source at this position is still quite clear.
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Fig. 6.2 3-D projection of the normal Intensity component
over a sphere for a single piston centered an surface
element number 1 as reconstructed from a planar hologram.

............d. ?
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V .

Fig. 6.3 The reconstructed normal component of intensity
for a piston source centered on surface element 20.
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Fig. 6.4 The reconstructed normal component of intensity
for a piston source centered on surface element 56.
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-I.

Fig. 6.5 The reconstructed normal component of intensity
for a piston source which faces directly away from the

h o r

hologram plane.
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To see what happens when an actual source is poorly

fit by the surface model, a reconstruction of a piston

source which faces directly away from the hologram plane

is presented in figure 6.5. The orientation of the

theoretical piston is such that it is centered on a

vertex of the five bottom-most elements and not on any

single element. The reconstructed source strength at each of

these five elements is approximately 20% that of the

theoretical valie at the source's center. Again the

location of the source is clear, and it is reasonable to

claim that only with a more complex surface approximation

could any more detail about the source be obtained.

The sample reconstructions presented demonstrate the

resolution possible in reconstructing a high aspect ratio

object, the sphere, from measurements over a planar array.

An actual physical experiment using these techniques, and

with more sophisticated surface approximation elements,5 is

planned in the work of another graduate student.5

D.3 Reconstruction from a conforming hologram surface

The reconstructions from a planar hologram presented

above required a large number of field measurements to

achieve their resolution. Similar resolution can be achieved

with far fewer field measurement points if all the points
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p

fall on a surface which is nearby and surrounds the

odd-shaped surface. As an example of this, the surface field

of the small piston in a sphere is presented as

reconstructed from 60 field measurements taken over a

concentric sphere 0.23N away.

Figure 6.6 displays the reconstructed amplitude of

the normal component of surface velocity for a piston source

centered on element 1. All sixty modes of the decomposition

were used in this reconstruction and those presented below;

these solutions can be considered free of any subjective

filtering. The reconstructed maximum source velocity is 80%

of the theoretical value. The noise in this display could

be decreased by filtering out those modes corresponding to

the smallest singular value, but it was retained to

illustrate that this noise is not carried through the

pressure field reconstruction process.

The amplitude of the reconstructed surface pressure

field is displayed in figure 6.7a. This surface field was

calculated from the velocity field displayed in figure 6.6

and the surface solution matrix. The amplitude of the

theoretical field is shown in figure 6.7b below the

experimental field. Both plots have the same scale and the

agreement between the two is quite clear. The apparently

good agreement between these two plots suggests that the

surface velocity field of figure 6.6 differs from the

.',.,, ' 4 ,- "" . "", ,. " - ' - , . , .. . "."- .. ' ." _ , .' .' L ! ''
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theoretical field mostly by a contribution

from noisy but non-radiating modes.

The reconstructed normal component of itensity for this

source is displayed in figure 6.8. This plot clearly shows

the existence of a small localized source and so illustrates

the accurate reconstruction of phase information as well as

amplitude information.

I-
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Fig. 6.6 The reconstructed amplitude of the normal
component of surface velocity for a piston source centered
on element 1 from a conforming hologram.
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Fig. 6.7 a) The reconstructed amplitude of the surface
pressure for a piston source centered on element 1 from a
conforming hologram; b) theoretical amplitude.
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I,

Fig. 6.8 The reconstructed normal component of intensity
for a piston source centered on element I from a conforming
hologram.
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Appendix A.

Discrete Convolution with the DFT

Discrete convolutions such as equation (3.6) of chapter

III, can be performed exactly and quickly with the aid of

the FFT to perform DFT operations.

To introduce the DFT and IDFT into equation (3.6),

equation (3.6) is rewritten with the aid of the Kronecker

Delta function,

{;m=n
mn ; m n

The result is

N-I N-I N-I N-IT(p,q,z)= 2 4 1X ( , m)G (r s,z)5

1=0 m=O r=-N s=- N oN o,N ' )r,p-l s,q-m
(A.1).

The Delta function can be written in terms of the Fourier

coefficients as
M-1 mn

amn e- iq A(m-n) where M=2N.mn=M jt=0 '.

Substituting this expansion for the Delta functions in

equation (A.1) and rearranging the summations leaves

T(p,q,z)=
1M-1 M-1 in(Ap+vq)[N-1 N-1 errl m)

m27 e N_ 2T (1,m)eiqAmV X

A=o =o [1=0 mOD I N J

2 G (r, s -in(rA+sv)

r=-N s=-N oN ' (A.2).

Using the functions and ' as defined in equations

n NH
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(3.7) and (3.12), the bracketed double sums in (A2) can be

rewritten as DFT's. By making use of the identity

exp(inr/N] = exp(in(r-2N)y/N] to arrange the second

bracketed sum, equation (A2) becomes

9P(p,q,z)=

M-1 M-1 e( M-1 1
- I e N9" 4 (1,m)e-'( mVm2 )LWVVM1M11=0 M=O D/= m ,~' ( '~ M

E E G' (r s,z)e-N r + )

r=O s=O D, r s z (A.3). -

The summations in equation (A3) can now be replaced by the

DFT and IDFT operations as defined in equations (3.8) and

(3.9). The final form with these substitutions is given by

equations (3.10) and (3.11).

.

.. . .. -.. . ... .....:- ........ , .. ,. .i. . ... . . . . .,....o . .-... ..... .......-..... .. - . , ..-,...
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Appendix B.

Quadratic expansion and Integration of the Green's Functions

Real-space Green's functions

Rectangular Elements

Integrations, over rectangular patches, of the real

space Green's function are approximated by a truncated

Taylor series expansion of the function about each patch's

center (xo,Y0):

G(xo+ x,y0 +y,Z-Zo) f(x,y), with z-z0 constant, where

f(x,y) = a +a x+ 2y+a xy+ 4x
2 +a y2 +a x2 y+a y 2+csx2 y2

and where the ai are given below.

Integration of this form over the patch yields

2 2 f(x,y)dxdy
-A__x -A

2 2

- a0 AXAY +a 4 (Ax)
3A +a 5Ax(A

V )3 +aa(AX)(y)2  (B.1).
12 12 144

Along the z-axis x. y0 = 0, a different approach is

used: The exact integral over a circular region of radius

r around the axis is performed, and the integration over the

remaining region, to complete a square, is approximated by
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expanding about the square's corner. In terms of the

expansion coefficients, ai, a single corner integration

yields

r~r f(x',y') dx'dy'=

0O(r2-x'2) 1/2

a P 0r 
2+ (cx+a 2 )p~ 3 +3 fa3  r 4+( a,+a5 )g r+(a. r~a 5~ r+a 3 8 r 

6

(B.2)

where x,y, are from the center of the square, while x' ,y'

are from one of its corners. The coefficients piare:

02.1460184 x 10-1

$ 4.793517 x 10-2

P3 6.2685032 x 10-3

P 1.8252296 x 1-

P6 1.5856291 x 10-3

82.889426 x 1-

The exact integration over the central circular region for

Neumann boundary conditions is

G 2 r rlrG z) r'dr'dG p 4l eikz -eik(r z ( . )

and for Dirichlet boundary conditions it is

,2", rr 
ikr 2+Z ±2 1 

0' 0GD(r'~z) r'dr'de = eZ -k ze ( 2 + 2)/2 (-4)
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To calculate go 2 (Z) or g(4)(z) from equation (3.11),

GN (,m,z) is approximated by a polynomial expansion as

given in equation (B.l) except when the point (x=0,y=0) is

included in the integration patch indicated by I and m.

Appropriate values for x0 and y0 are given by x1 and ym of

equation (3.3) and (3.4) for g,(2)(z), and by xi = x, + A/2

and y, = y1 + A/2 for g((z).

The point (x=O,y=O) is centered in the integration

patch of DN (1=0,m=O,z) for g,2 ,(z). In this case, the

approximation for , N (l=0,m=O,z) is the sum of the

appropriate integral from equations (B.3) and (B.4) with

r=A/2 plus four times (once for each corner of the patch)

equation (B.2),with r=A/2 and with x0 = y0 =A/2 (to determine

the coefficients ai(xO 1y0 )].

When calculating g 4'(z) based on equation (3.11) and

the shifted sampling coordinates x} and y , the four

integrations, which yield o (1,,m,z) for (1,m) = (0,0),

(-1,O),(O,-1),(-1,-1), have the point (x=O,y=O) at one

corner of their integration patches. (1,m,z) for eachO,N

of these four index jjaJ,:s is given by one-fourth the

appropriate integral from equations (B.3) and (B.4) Plus the

-itr L'- - " ! -- - -- :- ,, ,.*f,, , .
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corner integration, equation (B.2), with r=A and with

xo=yo=,&.

The form g(1 )(z) is calculated from equation 
(3.13) as of

described except when 1 = m = 0. For I = m = 0, the

appropriate integral, Dirichlet or Neumann, from equations

(B.2) and (B.4) is used with r=

..
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The Expansion Polynomial Coefficients ai(x 3 ,y,), where

a = kR 0  b = kx I d = ky, k = w./c, and R 2 =X 2 + y2 + Z

00 0 0

are for Neumann Boundary conditions (normal velocity to

pressure):

2 a
ao -

a =-JEEb(ia -a )e

ak i

+(ck 2 -3 a+a 5 1ia 6 -5 7

a+bad 2 (I~a +b1(-a 6 .-45a-7 +3a5i)+1]e)ei
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and for Dirichlet boundary conditions (pressure to

pressure): 5

_ kz -3 aa

kzb(a-+3ia_*3a-5)eLa
£ 2'.o

a k4zd(a-3+3ia-*-3a-5)eia

0_ -7 ia
a d2n- ua-*-6a-5-15ia-6+15a )e3 YSry

a= k5[(a-3+31a-*-3a-5)+b2(ia-*-6a-5-15ia-6+15a-7)]eia

a= k 6z (a - + 3 ia a+ ( - *-6 a - 15a-+15a ]e

a,= -:z[d(1a-*-6a-1-15ia-6+15a -7)

+bd(-a -lOia-+45a-+O5ia-8 -lO5a-9)lea

7 = T--kz[b(ia-*-6a-5-15ia-6+15a - 7 )  .
+bd2(-a-5-l0ia-6+45a-7 +1051a-8-105a-9)]e ia

a,= k--(i a-*-6a 5-15ia- 6 +15a-7 )

+2bd(a--IOia-6+45a-7+1O5ia- a-1O5a- 9 )

+b 2d2(- a - +15a -7+ O5ia -8 - 420a -9 -945ia-' z +945a -± ]e ia

Triangular elements
°.

Integrations of the Green's functions are done in the

same manner as is done for rectangular elements, although

only the first six expansion terms are considered. In the

. . . . .. . .. . . . . . ..5"- A=
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I-.

local coordinate system of each triangle, the vertices have

coordinates (x1 ,y ), (x2 y2 ), and (x3 y). The result of
I.

integrating the Taylor series expansion, in terms of the

local vertex coordinates and total triangle area 6, is

f(x ,y ) dx'dy'=

a &+a s-ix y +x2 y +x y3 )+ a ix 2 +x 2 +x 2 )+ a  2 + 2+ 2)
12 12 12

When calculating the diagonal monopole coefficient, equation

(B.3) is evaluated with r=(A/) 1/2 and no expansion terms

are considered.

*1

I.-. -. ..- 0
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Integrated k-space Green's functions

The integrated k-space Green's functions are obtained

by performing an integration averaging of the analytic

Green's function in the area between kri and kr2 where kri=

(k2 + k2)/2 - kr and kr= (kx2 + k2)./2 + akr In this

x y ry

study, Akr=j 7akx is used. The resulting integrated averages

for Neumann boundary conditions are:

Radiation region

ik z ik z221pckz(e L -e a) k2 =k2-k2
()(kxpkyoz) - -k

(k 2 z 2 - kz)k2 a -r2

2 22r

2pck
when z=O

(kL + k )

Mixed evanescent and propagating region

2ipc ikz -k z22
2ipckz(e I -e -z) k=k -k 2

g(6 ) Z _______________

g9N)(kx~kylz k .
(k2 z 2 + k 2 z 2 ) k2 =k 2 -k 2

1 2 2 r 2

2pck(k1 -ik ) when z=O

(k 2 + k2 )
1 2

Evanescent region

21pckz(e-k z e-k2z) k2=k 2 -k 2

9g 6 )(kxfkyz) = + ri
(k2 z2  k 2z 2 ) a a 2

1 22r2
-2ipck

when z=O
.5(k L + k 2

A 2A

.
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The resulting integrated averages for Dirichlet boundary

conditions are:

Radiation region

[ (I-ik z)eikz - (I-lk z)eik2z] k2=k2 -k2g(6) (k11,k,z)= i
S a 2 2

I - k2 )k 2-k2 -k2

Mixed evanescent and propagating region
((1-y k z)ei

k z - (1+k2 z)e
-k a kk 2  k2

Zk z)= 2-_ (k2Z2 + k2z2 ) k'=k2 -k2

1 2 2  r 2 -

Evanscent region

g(l+k z)ek±z - (1+k z)e-k 2Z] k2 =k2 -kz
k = -2- (k2 -2 _ kaz2 ) k2 _ 2 = -k

1 2 2 ra

d.."

*' , • °

*S'""4 55 *"" "" '.. "-"--" " ""*:- -"-" • :- ¢ i. -"-- .. - ".." ."..-,-.',.v .. ".',''...:
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Appendix C.

DFT Error in Approximating the Continuous Fourier Transform

The 2-D Fourier transform of a function f(x,y) is

given explicitly by

F(kxfk y) [ f(x,y)e xY dxdy (C.1).

It is assumed that the function f(x,y) is reasonably smooth

and is known at a sufficiently large number of points

(x ~y) so that one can write f(x,y)= f(x iy) if Ix-xr!I5,/ 2

and ly-y 5 A/2 where xr= rA and Ys= sA for r,s= 0,±l,±2 ..

Equation (C.1) can then be written:

pr+,&/2 PYs+' 2 i(k x+k Y)
4,kp f(x1 'y5) e J x d dxy (C.2).y r s r frx/2

The integral in equation (C.2) is readily evaluated

yielding:

Fk~v-i(k x+k y 4 sifl(kxtA/ 2 ) ki~ A2
F'xtkY'=z f(x y )x r y [ sinkVA/

(C.3).

The discrete Fourier Transform of f(x~~ 5  can be written
rlys*

explicitly as:

F'(kxlk ~= ~ f(x y)e x rY ) yC4

r s

By dividing equation (C.4) by equation (C.3), an estimate is

obtained for the error in approximating the continuous
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Fourier transform of an approximately piecewise constant

function f(x,y) by the Discrete Fourier transform. The

result is:

F'(kxlk k kkA(.)

F(kxtky [4 sin(k A/2) 5 in(k &/2)]

y x y*
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